Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Langmuir ; 37(24): 7600-7610, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34115507

ABSTRACT

Cationic nanoparticles are known to interact with biological membranes and often cause serious membrane damage. Therefore, it is important to understand the molecular mechanism for such interactions and the factors that impact the degree of membrane damage. Previously, we have demonstrated that spatial distribution of molecular charge at cationic nanoparticle surfaces plays an important role in determining the cellular uptake and membrane damage of these nanoparticles. In this work, using diamond nanoparticles (DNPs) functionalized with five different amine-based surface ligands and small phospholipid unilamellar vesicles (SUVs), we further investigate how chemical features and conformational flexibility of surface ligands impact nanoparticle/membrane interactions. 31P-NMR T2 relaxation measurements quantify the mobility changes in lipid dynamics upon exposing the SUVs to functional DNPs, and coarse-grained molecular dynamics simulations further elucidate molecular details for the different modes of DNP-SUV interactions depending on the surface ligands. Collectively, our results show that the length of the hydrophobic segment and conformational flexibility of surface ligands are two key factors that dictate the degree of membrane damage by the DNP, while the amount of surface charge alone is not predictive of the strength of interaction.


Subject(s)
Nanoparticles , Phospholipids , Cations , Ligands , Lipid Bilayers , Molecular Dynamics Simulation , Molecular Structure , Nanoparticles/toxicity
2.
ACS Nanosci Au ; 1(1): 6-14, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-37102118

ABSTRACT

The Primarily Undergraduate Nanomaterials Cooperative (PUNC) is an organization for research-active faculty studying nanomaterials at Primarily Undergraduate Institutions (PUIs), where undergraduate teaching and research go hand-in-hand. In this perspective, we outline the differences in maintaining an active research group at a PUI compared to an R1 institution. We also discuss the work of PUNC, which focuses on community building, instrument sharing, and facilitating new collaborations. Currently consisting of 37 members from across the United States, PUNC has created an online community consisting of its Web site (nanocooperative.org), a weekly online summer group meeting program for faculty and students, and a Discord server for informal conversations. Additionally, in-person symposia at ACS conferences and PUNC-specific conferences are planned for the future. It is our hope that in the years to come PUNC will be seen as a model organization for community building and research support at primarily undergraduate institutions.

3.
J Am Chem Soc ; 142(24): 10814-10823, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32402194

ABSTRACT

While positively charged nanomaterials induce cytotoxicity in many organisms, much less is known about how the spatial distribution and presentation of molecular surface charge impact nanoparticle-biological interactions. We systematically functionalized diamond nanoparticle surfaces with five different cationic surface molecules having different molecular structures and conformations, including four small ligands and one polymer, and we then probed the molecular-level interaction between these nanoparticles and bacterial cells. Shewanella oneidensis MR-1 was used as a model bacterial cell system to investigate how the molecular length and conformation of cationic surface charges influence their interactions with the Gram-negative bacterial membranes. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) demonstrate the covalent modification of the nanoparticle surface with the desired cationic organic monolayers. Surprisingly, bacterial growth-based viability (GBV) and membrane damage assays both show only minimal biological impact by the NPs functionalized with short cationic ligands within the concentration range tested, yet NPs covalently linked to a cationic polymer induce strong cytotoxicity, including reduced cellular viability and significant membrane damage at the same concentration of cationic groups. Transmission electron microscopy (TEM) images of these NP-exposed bacterial cells show that NPs functionalized with cationic polymers induce significant membrane distortion and the production of outer membrane vesicle-like features, while NPs bearing short cationic ligands only exhibit weak membrane association. Our results demonstrate that the spatial distribution of molecular charge plays a key role in controlling the interaction of cationic nanoparticles with bacterial cell membranes and the subsequent biological impact. Nanoparticles functionalized with ligands having different lengths and conformations can have large differences in interactions even while having nearly identical zeta potentials. While the zeta potential is a convenient and commonly used measure of nanoparticle charge, it does not capture essential differences in molecular-level nanoparticle properties that control their biological impact.


Subject(s)
Cell Membrane/chemistry , Nanoparticles/chemistry , Shewanella/chemistry , Cations/chemistry , Microbial Viability , Particle Size , Shewanella/cytology , Surface Properties
4.
Chem Res Toxicol ; 33(3): 806-816, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32013395

ABSTRACT

Cobalt phosphate engineered nanomaterials (ENMs) are an important class of materials that are used as lithium ion battery cathodes, catalysts, and potentially as super capacitors. As production of these nanomaterials increases, so does the likelihood of their environmental release; however, to date, there are relatively few investigations of the impact of nanoscale metal phosphates on biological systems. Furthermore, nanomaterials used in commercial applications are often multiphase materials, and analysis of the toxic potential of mixtures of nanomaterials has been rare. In this work, we studied the interactions of two model environmental bacteria, Shewanella oneidensis MR-1 and Bacillus subtilis, with a multiphase lithiated cobalt phosphate (mLCP) nanomaterial. Using a growth-based viability assay, we found that mLCP was toxic to both bacteria used in this study. To understand the observed toxicity, we screened for production of reactive oxygen species (ROS) and release of Co2+ from mLCP using three abiotic fluorophores. We also used Newport Green DCF dye to show that cobalt was taken up by the bacteria after mLCP exposure. Using transmission electron microscopy, we noted that the mLCP was not associated with the bacterial cell surface. In order for us to further probe the mechanism of interaction of mLCP, the bacteria were exposed to an equivalent dose of cobalt ions that dissolved from mLCP, which recapitulated the changes in viability when the bacteria were exposed to mLCP, and it also recapitulated the observed bacterial uptake of cobalt. Taken together, this implicates the release of cobalt ions and their subsequent uptake by the bacteria as the major toxicity mechanism of mLCP. The properties of the ENM govern the release rate of cobalt, but the toxicity does not arise from nanospecific effects-and importantly, the chemical composition of the ENM may dictate the oxidation state of the metal centers and thus limit ROS production.


Subject(s)
Bacillus subtilis/drug effects , Nanostructures/toxicity , Phosphines/toxicity , Shewanella/drug effects , Bacillus subtilis/chemistry , Bacillus subtilis/growth & development , Dose-Response Relationship, Drug , Microscopy, Electron, Transmission , Nanostructures/chemistry , Particle Size , Phosphines/chemical synthesis , Phosphines/chemistry , Shewanella/chemistry , Shewanella/growth & development , Surface Properties
5.
Chem Sci ; 11(41): 11244-11258, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-34094365

ABSTRACT

The increasing use of nanoscale lithium nickel manganese cobalt oxide (Li x Ni y Mn z Co1-y-z O2, NMC) as a cathode material in lithium-ion batteries poses risk to the environment. Learning toxicity mechanisms on molecular levels is critical to promote proactive risk assessment of these complex nanomaterials and inform their sustainable development. We focused on DNA damage as a toxicity mechanism and profiled in depth chemical and biological changes linked to DNA damage in two environmentally relevant bacteria upon nano-NMC exposure. DNA damage occurred in both bacteria, characterized by double-strand breakage and increased levels of many putative chemical modifications on bacterial DNA bases related to direct oxidative stress and lipid peroxidation, measured by cutting-edge DNA adductomic techniques. Chemical probes indicated elevated intracellular reactive oxygen species and transition metal ions, in agreement with DNA adductomics and gene expression analysis. By integrating multi-dimensional datasets from chemical and biological measurements, we present rich mechanistic insights on nano-NMC-induced DNA damage in bacteria, providing targets for biomarkers in the risk assessment of reactive materials that may be extrapolated to other nano-bio interactions.

6.
Chem Sci ; 11(16): 4106-4118, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-34122876

ABSTRACT

Molecular-level understanding of nanomaterial interactions with bacterial cell surfaces can facilitate design of antimicrobial and antifouling surfaces and inform assessment of potential consequences of nanomaterial release into the environment. Here, we investigate the interaction of cationic nanoparticles with the main surface components of Gram-positive bacteria: peptidoglycan and teichoic acids. We employed intact cells and isolated cell walls from wild type Bacillus subtilis and two mutant strains differing in wall teichoic acid composition to investigate interaction with gold nanoparticles functionalized with cationic, branched polyethylenimine. We quantified nanoparticle association with intact cells by flow cytometry and determined sites of interaction by solid-state 31P- and 13C-NMR spectroscopy. We find that wall teichoic acid structure and composition were important determinants for the extent of interaction with cationic gold nanoparticles. The nanoparticles interacted more with wall teichoic acids from the wild type and mutant lacking glucose in its wall teichoic acids than those from the mutant having wall teichoic acids lacking alanine and exhibiting more restricted molecular motion. Our experimental evidence supports the interpretation that electrostatic forces contributed to nanoparticle-cell interactions and that the accessibility of negatively charged moieties in teichoic acid chains influences the degree of interaction. The approaches employed in this study can be applied to engineered nanomaterials differing in core composition, shape, or surface functional groups as well as to other types of bacteria to elucidate the influence of nanoparticle and cell surface properties on interactions with Gram-positive bacteria.

7.
Environ Sci Nano ; 6(1): 305-314, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-31572614

ABSTRACT

The wide applications of lithium intercalating complex metal oxides in energy storage devices call for a better understanding of their environmental impact at the end of their life cycle. In this study, we examine the biological impact of a panel of nanoscale lithium nickel manganese cobalt oxides (Li x Ni y Mn z Co1-y-z O2, 0 < x, y, z < 1, abbreviated to NMCs) to a model Gram-positive bacterium, Bacillus subtilis, in terms of cellular respiration and growth. A highly sensitive single-cell gel electrophoresis method is also applied for the first time to understand the genotoxicity of these nanomaterials to bacterial cells. Results from these assays indicate that the free Ni and Co ions released from the incongruent dissolution of the NMC material in B. subtilis growth medium induced both hindered growth and cellular respiration. More remarkably, the DNA damage induced by the combination of the two ions in solution is comparable to that induced by the NMC material, which suggests that the free Ni and Co ions are responsible for the toxicity observed. A material redesign by enriching Mn is also presented. The combined approaches of evaluating their impact on bacterial growth, respiration, and DNA damage at a single-cell level, as well as other phenotypical changes allows us to probe the nanomaterials and bacterial cells from a mechanistic prospective, and provides a useful means to an understanding of bacterial response to new potential environmental stressors.

8.
Chemosphere ; 237: 124511, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31549642

ABSTRACT

Here, we investigate the impact of iron oxide nanoparticles (IONPs) and mesoporous silica-coated iron oxide nanoparticles (msIONPs) on Shewanella oneidensis in an aerobic environment, which is likely the main environment where such nanoparticles will end up after use in consumer products or biomedical applications. Monitoring the viability of S. oneidensis, a model environmental organism, after exposure to the nanoparticles reveals that IONPs promote bacterial survival, while msIONPs do not impact survival. These apparent impacts are correlated with association of the nanoparticles with the bacterial membrane, as revealed by TEM and ICP-MS studies, and upregulation of membrane-associated genes. However, similar survival in bacteria was observed when exposed to equivalent concentrations of released ions from each nanomaterial, indicating that aqueous nanoparticle transformations are responsible for the observed changes in bacterial viability. Therefore, this work demonstrates that a simple mesoporous silica coating can control the dissolution of the IONP core by greatly reducing the amount of released iron ions, making msIONPs a more sustainable option to reduce perturbations to the ecosystem upon release of nanoparticles into the environment.


Subject(s)
Ferric Compounds/metabolism , Nanoparticles/metabolism , Shewanella/physiology , Silicon Dioxide/metabolism , Ecosystem , Iron
9.
Chem Sci ; 10(42): 9768-9781, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-32055346

ABSTRACT

Engineered nanoparticles are incorporated into numerous emerging technologies because of their unique physical and chemical properties. Many of these properties facilitate novel interactions, including both intentional and accidental effects on biological systems. Silver-containing particles are widely used as antimicrobial agents and recent evidence indicates that bacteria rapidly become resistant to these nanoparticles. Much less studied is the chronic exposure of bacteria to particles that were not designed to interact with microorganisms. For example, previous work has demonstrated that the lithium intercalated battery cathode nanosheet, nickel manganese cobalt oxide (NMC), is cytotoxic and causes a significant delay in growth of Shewanella oneidensis MR-1 upon acute exposure. Here, we report that S. oneidensis MR-1 rapidly adapts to chronic NMC exposure and is subsequently able to survive in much higher concentrations of these particles, providing the first evidence of permanent bacterial resistance following exposure to nanoparticles that were not intended as antibacterial agents. We also found that when NMC-adapted bacteria were subjected to only the metal ions released from this material, their specific growth rates were higher than when exposed to the nanoparticle. As such, we provide here the first demonstration of bacterial resistance to complex metal oxide nanoparticles with an adaptation mechanism that cannot be fully explained by multi-metal adaptation. Importantly, this adaptation persists even after the organism has been grown in pristine media for multiple generations, indicating that S. oneidensis MR-1 has developed permanent resistance to NMC.

10.
Environ Sci Technol ; 51(19): 11075-11084, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28817268

ABSTRACT

Changes to nanoparticle surface charge, colloidal stability, and hydrodynamic properties induced by interaction with natural organic matter (NOM) warrant consideration in assessing the potential for these materials to adversely impact organisms in the environment. Here, we show that acquisition of a coating, or "corona", of NOM alters the hydrodynamic and electrokinetic properties of diamond nanoparticles (DNPs) functionalized with the polycation poly(allylamine HCl) in a manner that depends on the NOM-to-DNP concentration ratio. The NOM-induced changes to DNP properties alter subsequent interactions with model biological membranes and the Gram-negative bacterium Shewanella oneidensis MR-1. Suwannee River NOM induces changes to DNP hydrodynamic diameter and apparent ζ-potential in a concentration-dependent manner. At low NOM-to-DNP ratios, DNPs aggregate to a limited extent but retain a positive ζ-potential apparently due to nonuniform adsorption of NOM molecules leading to attractive electrostatic interactions between oppositely charged regions on adjacent DNP surfaces. Diamond nanoparticles at low NOM-to-DNP ratios attach to model membranes to a larger extent than in the absence of NOM (including those incorporating lipopolysaccharide, a major bacterial outer membrane component) and induce a comparable degree of membrane damage and toxicity to S. oneidensis. At higher NOM-to-DNP ratios, DNP charge is reversed, and DNP aggregates remain stable in suspension. This charge reversal eliminates DNP attachment to model membranes containing the highest LPS contents studied due to electrostatic repulsion and abolishes membrane damage to S. oneidensis. Our results demonstrate that the effects of NOM coronas on nanoparticle properties and interactions with biological surfaces can depend on the relative amounts of NOM and nanoparticles.


Subject(s)
Diamond , Nanoparticles , Rivers , Shewanella , Suspensions
11.
Anal Chem ; 89(3): 2057-2064, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28208291

ABSTRACT

Current high-throughput approaches evaluating toxicity of chemical agents toward bacteria typically rely on optical assays, such as luminescence and absorbance, to probe the viability of the bacteria. However, when applied to toxicity induced by nanomaterials, scattering and absorbance from the nanomaterials act as interferences that complicate quantitative analysis. Herein, we describe a bacterial viability assay that is free of optical interference from nanomaterials and can be performed in a high-throughput format on 96-well plates. In this assay, bacteria were exposed to various materials and then diluted by a large factor into fresh growth medium. The large dilution ensured minimal optical interference from the nanomaterial when reading optical density, and the residue left from the exposure mixture after dilution was confirmed not to impact the bacterial growth profile. The fractions of viable cells after exposure were allowed to grow in fresh medium to generate measurable growth curves. Bacterial viability was then quantitatively correlated to the delay of bacterial growth compared to a reference regarded as 100% viable cells; data analysis was inspired by that in quantitative polymerase chain reactions, where the delay in the amplification curve is correlated to the starting amount of the template nucleic acid. Fast and robust data analysis was achieved by developing computer algorithms carried out using R. This method was tested on four bacterial strains, including both Gram-negative and Gram-positive bacteria, showing great potential for application to all culturable bacterial strains. With the increasing diversity of engineered nanomaterials being considered for large-scale use, this high-throughput screening method will facilitate rapid screening of nanomaterial toxicity and thus inform the risk assessment of nanoparticles in a timely fashion.


Subject(s)
Bacillus subtilis/drug effects , Bacillus subtilis/growth & development , High-Throughput Screening Assays/methods , Nanostructures/toxicity , Shewanella/drug effects , Shewanella/growth & development , Toxicity Tests/methods , Algorithms , Anti-Bacterial Agents/pharmacology , Automation , Microbial Sensitivity Tests , Polymerase Chain Reaction/methods
12.
Int J Nanomedicine ; 11: 729-41, 2016.
Article in English | MEDLINE | ID: mdl-27013873

ABSTRACT

In this work, silica nanofibers (SNFs) were prepared by an electrospinning method and modified with poly-d-lysine (PDL) or (3-aminopropyl) trimethoxysilane (APTS) making biocompatible and degradable substrates for neuronal growth. The as-prepared SNF, modified SNF-PDL, and SNF-APTS were evaluated using scanning electron microscopy, nitrogen adsorption/desorption isotherms, contact angle measurements, and inductively coupled plasma atomic emission spectroscopy. Herein, the scanning electron microscopic images revealed that dissolution occurred in a corrosion-like manner by enlarging porous structures, which led to loss of structural integrity. In addition, covalently modified SNF-APTS with more hydrophobic surfaces and smaller surface areas resulted in significantly slower dissolution compared to SNF and physically modified SNF-PDL, revealing that different surface modifications can be used to tune the dissolution rate. Growth of primary hippocampal neuron on all substrates led to a slower dissolution rate. The three-dimensional SNF with larger surface area and higher surface density of the amino group promoted better cell attachment and resulted in an increased neurite density. This is the first known work addressing the degradability of SNF substrate in physiological conditions with neuron growth in vitro, suggesting a strong potential for the applications of the material in controlled drug release.


Subject(s)
Biocompatible Materials/chemistry , Electrochemistry , Hippocampus/physiology , Nanofibers/chemistry , Neurons/physiology , Silicon Dioxide/chemistry , Tissue Engineering/methods , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/physiology , Hippocampus/cytology , Microscopy, Electron, Scanning , Neurons/cytology , Porosity , Rats , Silanes/chemistry , Surface Properties
13.
Anal Chem ; 87(8): 4356-62, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25830244

ABSTRACT

Dark field transmission electron microscopy has been applied herein to visualize the interactions of inorganic nanomaterials with biological systems. This new application of a known technique addresses a deficiency in status quo visualization techniques. High resolution and low noise images can be acquired to locate and identify crystalline nanoparticles in complex biological matrices. Moreover, through the composition of multiple images taken at different angular beam tilts, it is possible to image a majority of nanoparticles present at a site in dark field mode. This facilitates clarity regarding the internalization of nanomaterials in cellular systems. In addition, comparing dark field images recorded at different angular tilts yields insight into the character of nanoparticle faceting.


Subject(s)
Bacillus subtilis/chemistry , Ferric Compounds/analysis , Gold/analysis , Leukocytes, Mononuclear/chemistry , Nanoparticles/analysis , Humans , Microscopy, Electron, Transmission
14.
Chem Sci ; 6(9): 5186-5196, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-29449924

ABSTRACT

Although nanomaterials facilitate significant technological advancement in our society, their potential impacts on the environment are yet to be fully understood. In this study, two environmentally relevant bacteria, Shewanella oneidensis and Bacillus subtilis, have been used as model organisms to elucidate the molecular interactions between these bacterial classes and Au nanoparticles (AuNPs) with well-controlled and well-characterized surface chemistries: anionic 3-mercaptopropionic acid (MPA), cationic 3-mercaptopropylamine (MPNH2), and the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH). The data demonstrate that cationic, especially polyelectrolyte-wrapped AuNPs, were more toxic to both the Gram-negative and Gram-positive bacteria. The levels of toxicity observed were closely related to the percentage of cells with AuNPs associated with the cell surface as measured in situ using flow cytometry. The NP concentration-dependent binding profiles were drastically different for the two bacteria strains, suggesting the critical role of bacterial cell surface chemistry in determining nanoparticle association, and thereby, biological impact.

15.
Biophys J ; 88(3): 2154-64, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15596519

ABSTRACT

We utilize in situ, temperature-dependent atomic force microscopy to examine the gel-fluid phase transition behavior in supported phospholipid bilayers constructed from 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1,2-dipentadecanoyl-sn-glycero-3-phosphocholine, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. The primary gel-fluid phase transition at T(m) occurs through development of anisotropic cracks in the gel phase, which develop into the fluid phase. At approximately 5 degrees C above T(m), atomic force microscopy studies reveal the presence of a secondary phase transition in all three bilayers studied. The secondary phase transition occurs as a consequence of decoupling between the two leaflets of the bilayer due to enhanced stabilization of the lower leaflet with either the support or the water entrained between the support and the bilayer. Addition of the transmembrane protein gramicidin A or construction of a highly defected gel phase results in elimination of this decoupling and removal of the secondary phase transition.


Subject(s)
Lipid Bilayers/chemistry , Membrane Fluidity , Microscopy, Atomic Force/methods , Phospholipids/analysis , Phospholipids/chemistry , Gels/analysis , Gels/chemistry , Lipid Bilayers/analysis , Macromolecular Substances/analysis , Macromolecular Substances/chemistry , Molecular Conformation , Phase Transition , Temperature
16.
Langmuir ; 20(20): 8796-804, 2004 Sep 28.
Article in English | MEDLINE | ID: mdl-15379509

ABSTRACT

Addition of a weak polyelectrolyte, poly(methacrylic acid) (PMA), to a supported phospholipid bilayer made from 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) depresses the melting temperature and alters the morphology of the bilayer in the gel phase. Ellipsometry measurements show that PMA adsorption lowers the phase transition temperature by 2.4 degrees C. Atomic force microscopy (AFM) showed no visible contrast in the fluid phase (above the melting temperature) but a rich morphology in the gel phase. In the gel phase, adsorption leads to formation of significantly less mobile phospholipid islands and other defects. One consequence of this lower mobility is a decrease in the implied cooperativity number of the phase transition, N, when polymer is added. Additionally, AFM images of the gel-phase bilayer show a highly defected structure that anneals significantly more slowly than in the absence of adsorbed polymer. Tentatively, we suggest that PMA preferentially decorates island and defect edges of the DMPC bilayer.


Subject(s)
Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Models, Biological , Polymethacrylic Acids/chemistry , Adsorption , Chemical Phenomena , Chemistry, Physical , Microscopy, Atomic Force , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...