Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Phys Rev Lett ; 129(12): 127201, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36179160

ABSTRACT

CrBr_{3} is an excellent realization of the two-dimensional honeycomb ferromagnet, which offers a bosonic equivalent of graphene with Dirac magnons and topological character. We perform inelastic neutron scattering measurements using state-of-the-art instrumentation to update 50-year-old data, thereby enabling a definitive comparison both with recent experimental claims of a significant gap at the Dirac point and with theoretical predictions for thermal magnon renormalization. We demonstrate that CrBr_{3} has next-neighbor J_{2} and J_{3} interactions approximately 5% of J_{1}, an ideal Dirac magnon dispersion at the K point, and the associated signature of isospin winding. The magnon lifetime and the thermal band renormalization show the universal T^{2} evolution expected from an interacting spin-wave treatment, but the measured dispersion lacks the predicted van Hove features, pointing to the need for more sophisticated theoretical analysis.

2.
Phys Rev Lett ; 121(6): 067202, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30141658

ABSTRACT

Determining the fate of the Pauling entropy in the classical spin ice material Dy_{2}Ti_{2}O_{7} with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in general. The standard model of spin ice-the dipolar spin ice model-predicts an ordering transition at T≈0.15 K, but recent experiments by Pomaranski et al. suggest an entropy recovery over long timescales at temperatures as high as 0.5 K, much too high to be compatible with the theory. Using neutron scattering and specific heat measurements at low temperatures and with long timescales (0.35 K/10^{6} s and 0.5 K/10^{5} s, respectively) on several isotopically enriched samples, we find no evidence of a reduction of ice-rule correlations or spin entropy. High-resolution simulations of the neutron structure factor show that the spin correlations remain well described by the dipolar spin ice model at all temperatures. Furthermore, by careful consideration of hyperfine contributions, we conclude that the original entropy measurements of Ramirez et al. are, after all, essentially correct: The short-time relaxation method used in that study gives a reasonably accurate estimate of the equilibrium spin ice entropy due to a cancellation of contributions.

3.
Nat Commun ; 9(1): 1999, 2018 05 21.
Article in English | MEDLINE | ID: mdl-29784922

ABSTRACT

The description and detection of unconventional magnetic states, such as spin liquids, is a recurring topic in condensed matter physics. While much of the efforts have traditionally been directed at geometrically frustrated antiferromagnets, recent studies reveal that systems featuring competing antiferromagnetic and ferromagnetic interactions are also promising candidate materials. We find that this competition leads to the notion of special temperatures, analogous to those of gases, at which the competing interactions balance, and the system is quasi-ideal. Although induced by weak perturbing interactions, these special temperatures are surprisingly high and constitute an accessible experimental diagnostic of eventual order or spin-liquid properties. The well characterised Hamiltonian and extended low-temperature susceptibility measurement of the canonical frustrated ferromagnet Dy2Ti2O7 enables us to formulate both a phenomenological and microscopic theory of special temperatures for magnets. Other members of this class of magnets include kapellasite Cu3Zn(OH)6Cl2 and the spinel GeCo2O4.

4.
Phys Rev Lett ; 120(13): 137201, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29694199

ABSTRACT

Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr_{2}Se_{4} is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three orders of magnitude faster than the canonical spin ice Dy_{2}Ti_{2}O_{7}. In this Letter we use diffuse neutron scattering to show that both CdEr_{2}Se_{4} and CdEr_{2}S_{4} support a dipolar spin ice state-the host phase for a Coulomb gas of emergent magnetic monopoles. These Coulomb gases have similar parameters to those in Dy_{2}Ti_{2}O_{7}, i.e., dilute and uncorrelated, and so cannot provide three orders faster dynamics through a larger monopole population alone. We investigate the monopole dynamics using ac susceptometry and neutron spin echo spectroscopy, and verify the crystal electric field Hamiltonian of the Er^{3+} ions using inelastic neutron scattering. A quantitative calculation of the monopole hopping rate using our Coulomb gas and crystal electric field parameters shows that the fast dynamics in CdEr_{2}X_{4} (X=Se, S) are primarily due to much faster monopole hopping. Our work suggests that CdEr_{2}X_{4} offer the possibility to study alternative spin ice ground states and dynamics, with equilibration possible at much lower temperatures than the rare earth pyrochlore examples.

5.
Reprod Toxicol ; 75: 10-22, 2018 01.
Article in English | MEDLINE | ID: mdl-29154916

ABSTRACT

The use of silver nanoparticles (AgNP) raises safety concerns during susceptible life stages such as pregnancy. We hypothesized that acute intravenous exposure to AgNP during late stages of pregnancy will increase vascular tissue contractility, potentially contributing to alterations in fetal growth. Sprague Dawley rats were exposed to a single dose of PVP or Citrate stabilized 20 or 110nm AgNP (700µg/kg). Differential vascular responses and EC50 values were observed in myographic studies in uterine, mesenteric arteries and thoracic aortic segments, 24h post-exposure. Reciprocal responses were observed in aortic and uterine vessels following PVP stabilized AgNP with an increased force of contraction in uterine artery and increased relaxation responses in aorta. Citrate stabilized AgNP exposure increased contractile force in both uterine and aortic vessels. Intravenous AgNP exposure during pregnancy displayed particle size and vehicle dependent moderate changes in vascular tissue contractility, potentially influencing fetal blood supply.


Subject(s)
Maternal Exposure/adverse effects , Metal Nanoparticles/toxicity , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/drug effects , Pharmaceutical Vehicles/toxicity , Silver/toxicity , Animals , Aorta, Thoracic/drug effects , Citric Acid/toxicity , Female , Fetal Development/drug effects , Injections, Intravenous , Mesenteric Arteries/drug effects , Particle Size , Povidone/toxicity , Pregnancy , Rats, Sprague-Dawley , Surface Properties , Uterine Artery/drug effects
6.
Phys Rev Lett ; 117(23): 237203, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27982654

ABSTRACT

Sr_{2}CuTeO_{6} presents an opportunity for exploring low-dimensional magnetism on a square lattice of S=1/2 Cu^{2+} ions. We employ ab initio multireference configuration interaction calculations to unravel the Cu^{2+} electronic structure and to evaluate exchange interactions in Sr_{2}CuTeO_{6}. The latter results are validated by inelastic neutron scattering using linear spin-wave theory and series-expansion corrections for quantum effects to extract true coupling parameters. Using this methodology, which is quite general, we demonstrate that Sr_{2}CuTeO_{6} is an almost ideal realization of a nearest-neighbor Heisenberg antiferromagnet but with relatively weak coupling of 7.18(5) meV.

7.
Nat Commun ; 7: 13039, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27698426

ABSTRACT

In vortex-like spin arrangements, multiple spins can combine into emergent multipole moments. Such multipole moments have broken space-inversion and time-reversal symmetries, and can therefore exhibit linear magnetoelectric (ME) activity. Three types of such multipole moments are known: toroidal; monopole; and quadrupole moments. So far, however, the ME activity of these multipole moments has only been established experimentally for the toroidal moment. Here we propose a magnetic square cupola cluster, in which four corner-sharing square-coordinated metal-ligand fragments form a noncoplanar buckled structure, as a promising structural unit that carries an ME-active multipole moment. We substantiate this idea by observing clear magnetodielectric signals associated with an antiferroic ME-active magnetic quadrupole order in the real material Ba(TiO)Cu4(PO4)4. The present result serves as a useful guide for exploring and designing new ME-active materials based on vortex-like spin arrangements.

8.
Neuroscience ; 324: 367-76, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-26964683

ABSTRACT

Chronic treatment with the monoamine releaser d-amphetamine has been consistently shown to decrease cocaine self-administration in laboratory studies and clinical trials. However, the abuse potential of d-amphetamine is an obstacle to widespread clinical use. Approaches are needed that exploit the efficacy of the agonist approach but avoid the abuse potential associated with dopamine releasers. The present study assessed the effectiveness of chronic oral administration of phendimetrazine (PDM), a pro-drug for the monoamine releaser phenmetrazine (PM), to decrease cocaine self-administration in four rhesus monkeys. Each day, monkeys pressed a lever to receive food pellets under a 50-response fixed-ratio (FR) schedule of reinforcement and self-administered cocaine (0.003-0.56 mg/kg per injection, i.v.) under a progressive-ratio (PR) schedule in the evening. After completing a cocaine self-administration dose-response curve, sessions were suspended and PDM was administered (1.0-9.0 mg/kg, p.o., b.i.d.). Cocaine self-administration was assessed using the PR schedule once every 7 days while food-maintained responding was studied daily. When a persistent decrease in self-administration was observed, the cocaine dose-effect curve was re-determined. Daily PDM treatment decreased cocaine self-administration by 30-90% across monkeys for at least 4 weeks. In two monkeys, effects were completely selective for cocaine. Tolerance developed to initial decreases in food-maintained responding in the third monkey and in the fourth subject, fluctuations were observed that were lower in magnitude than effects on cocaine self-administration. Cocaine dose-effect curves were shifted down and/or rightward in three monkeys. These data provide further support for the use of agonist medications for cocaine abuse, and indicate that the promising effects of d-amphetamine extend to a more clinically viable pharmacotherapy.


Subject(s)
Central Nervous System Stimulants/administration & dosage , Cocaine-Related Disorders/drug therapy , Cocaine/administration & dosage , Dopamine Uptake Inhibitors/administration & dosage , Morpholines/administration & dosage , Administration, Oral , Animals , Blood Chemical Analysis , Catheters, Indwelling , Central Nervous System Stimulants/blood , Dose-Response Relationship, Drug , Drug Tolerance , Feeding Behavior/drug effects , Macaca mulatta , Male , Morpholines/blood , Reinforcement Schedule , Self Administration , Treatment Outcome
9.
J Nanomed Nanotechnol ; 6(Suppl 6)2015 Nov.
Article in English | MEDLINE | ID: mdl-26966636

ABSTRACT

BACKGROUND: Silver nanoparticles (AgNP) have garnered much interest due to their antimicrobial properties, becoming one of the most utilized nano-scale materials. However, any potential evocable cardiovascular injury associated with exposure has not been reported to date. We have previously demonstrated expansion of myocardial infarction after intratracheal (IT) instillation of carbon-based nanomaterials. We hypothesized pulmonary exposure to Ag core AgNP induces a measureable increase in circulating cytokines, expansion of cardiac ischemia-reperfusion (I/R) injury and is associated with depressed coronary constrictor and relaxation responses. Secondarily, we addressed the potential contribution of silver ion release on AgNP toxicity. METHODS: Male Sprague-Dawley rats were exposed to 200 µl of 1 mg/ml of 20 nm citrate-capped Ag core AgNP, 0.01, 0.1, 1 mg/ml Silver Acetate (AgAc), or a citrate vehicle by intratracheal (IT) instillation. One and 7 days following IT instillation the lungs were evaluated for inflammation and the presence of silver; serum was analyzed for concentrations of selected cytokines; cardiac I/R injury and coronary artery reactivity were assessed. RESULTS: AgNP instillation resulted in modest pulmonary inflammation with detection of silver in lung tissue and alveolar macrophages, elevation of serum cytokines: G-CSF, MIP-1α, IL-1ß, IL-2, IL-6, IL-13, IL-10, IL-18, IL-17α, TNFα, and RANTES, expansion of I/R injury and depression of the coronary vessel reactivity at 1 day post IT compared to vehicle treated rats. Silver within lung tissue was persistent at 7 days post IT instillation and was associated with an elevation in cytokines: IL-2, IL-13, and TNFα and expansion of I/R injury. AgAc resulted in a concentration dependent infarct expansion and depressed vascular reactivity without marked pulmonary inflammation or serum cytokine response. CONCLUSIONS: Based on these data, IT instillation of AgNP increases circulating levels of several key cytokines, which may contribute to persistent expansion of I/R injury possibly through an impaired vascular responsiveness.

10.
Phys Rev Lett ; 112(1): 017203, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24483925

ABSTRACT

At low temperatures, Tb2Ti2O7 enters a spin liquid state, despite expectations of magnetic order and/or a structural distortion. Using neutron scattering, we have discovered that in this spin liquid state an excited crystal field level is coupled to a transverse acoustic phonon, forming a hybrid excitation. Magnetic and phononlike branches with identical dispersion relations can be identified, and the hybridization vanishes in the paramagnetic state. We suggest that Tb2Ti2O7 is aptly named a "magnetoelastic spin liquid" and that the hybridization of the excitations suppresses both magnetic ordering and the structural distortion. The spin liquid phase of Tb2Ti2O7 can now be regarded as a Coulomb phase with propagating bosonic spin excitations.

11.
J Nanomed Nanotechnol ; 5(3)2014 Jun.
Article in English | MEDLINE | ID: mdl-27066300

ABSTRACT

Multi-walled carbon nanotubes (MWCNTs) are increasingly used in industry and in nanomedicine raising safety concerns, especially during unique life-stages such as pregnancy. We hypothesized that MWCNT exposure during pregnancy will increase vascular tissue contractile responses by increasing Rho kinase signaling. Pregnant (17-19 gestational days) and non-pregnant Sprague Dawley rats were exposed to 100 µg/kg of MWCNTs by intratracheal instillation or intravenous administration. Vasoactive responses of uterine, mesenteric, aortic and umbilical vessels were studied 24 hours post-exposure by wire myography. The contractile responses of the vessel segments were different between the pregnant and non-pregnant rats, following MWCNT exposure. Maximum stress generation in the uterine artery segments from the pregnant rats following pulmonary MWCNT exposure was increased in response to angiotensin II by 4.9 mN/mm2 (+118%), as compared to the naïve response and by 2.6 mN/mm2 (+40.7%) as compared to the vehicle exposed group. Following MWCNT exposure, serotonin induced approximately 4 mN/mm2 increase in stress generation of the mesenteric artery from both pregnant and non-pregnant rats as compared to the vehicle response. A significant contribution of the dispersion medium was identified as inducing changes in the contractile properties following both pulmonary and intravenous exposure to MWCNTs. Wire myographic studies in the presence of a Rho kinase inhibitor and RhoA and Rho kinase mRNA/protein expression of rat aortic endothelial cells were unaltered following exposure to MWCNTs, suggesting absent/minimal contribution of Rho kinase to the enhanced contractile responses following MWCNT exposure. The reactivity of the umbilical vein was not changed; however, mean fetal weight gain was reduced with dispersion media and MWCNT exposure by both routes. These results suggest a susceptibility of the vasculature during gestation to MWCNT and their dispersion media-induced vasoconstriction, predisposing reduced fetal growth during pregnancy.

12.
J Phys Condens Matter ; 25(35): 356002, 2013 Sep 04.
Article in English | MEDLINE | ID: mdl-23917326

ABSTRACT

LuCuGaO4 has magnetic Cu(2+) and diamagnetic Ga(3+) ions distributed on a triangular bilayer and is suggested to undergo a spin glass transition at Tg ∼ 0.4 K. Using µSR (muon spin rotation) and neutron scattering measurements, we show that at low temperature the spins form a short range correlated state with spin fluctuations detectable over a wide range of timescales: at 0.05 K magnetic fluctuations can be detected in both the µSR time window and also extending beyond 7 meV in the inelastic neutron scattering response, indicating magnetic fluctuations spanning timescales between ∼10(-5) and ∼10(-10) s. The dynamical susceptibility scales according to the form χ″(ω)T(α), with α = 1, throughout the measured temperature range (0.05-50 K). These effects are associated with quantum fluctuations and some degree of structural disorder in ostensibly quite different materials, including certain heavy fermion alloys, kagome spin liquids, quantum spin glasses, and valence bond glasses. We therefore suggest that LuCuGaO4 is an interesting model compound for the further examination of disorder and quantum magnetism.


Subject(s)
Lutetium/chemistry , Nanoparticles/chemistry , Neutron Diffraction/methods , Materials Testing , Phase Transition , Spin Labels , Temperature
13.
Phys Rev Lett ; 109(1): 017201, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-23031127

ABSTRACT

We investigate the low-temperature state of the rare-earth pyrochlore Tb(2)Ti(2)O(7) using polarized neutron scattering. Tb(2)Ti(2)O(7) is often described as an antiferromagnetic spin liquid with spin correlations extending over lengths comparable to individual tetrahedra of the pyrochlore lattice. We confirm this picture at 20 K but find that at 0.05 K the data contain evidence of pinch-point scattering, suggesting that the low temperature state of Tb(2)Ti(2)O(7) has power-law spin correlations.

14.
J Phys Condens Matter ; 23(16): 164201, 2011 Apr 27.
Article in English | MEDLINE | ID: mdl-21471624

ABSTRACT

Spangolite, Cu(6)Al(SO(4))(OH)(12)Cl·3H(2)O, is a hydrated layered copper sulfate mineral. The Cu(2+) ions of each layer form a systematically depleted triangular lattice which approximates a maple leaf lattice. We present details of the crystal structure, which suggest that in spangolite this lattice actually comprises two species of edge linked trimers with different exchange parameters. However, magnetic susceptibility measurements show that despite the structural trimers, the magnetic properties are dominated by dimerization. The high temperature magnetic moment is strongly reduced below that expected for the six s = 1/2 in the unit cell.

15.
J Phys Condens Matter ; 22(11): 116007, 2010 Mar 24.
Article in English | MEDLINE | ID: mdl-21389482

ABSTRACT

The rare earth double perovskite Ba(2)ErSbO(6) contains an ordered face-centred cubic lattice of Er(3+) ions, suggesting that this material is a candidate for showing the effects of geometric magnetic frustration. Crystal field effects have also been shown to be important in this series. We report a systematic experimental study involving neutron scattering and bulk measurements that show no evidence of long ranged magnetic order or spin glass freezing down to 70 mK. A description of the system in terms of a crystal field scheme is established from inelastic neutron scattering. These measurements rule out significant magnetic coupling and show that all observed properties are fully explained by a model of uncoupled magnetic Er(3+) ions.

16.
Phys Rev Lett ; 103(18): 185702, 2009 Oct 30.
Article in English | MEDLINE | ID: mdl-19905814

ABSTRACT

By taking advantage of the molecular weight dependence of the glass transition of polymers and their ability to form perfectly miscible blends, we propose a way to modify the fragility of a system, from fragile to strong, keeping the same glass properties, i.e., vibrational density of states, mean-square displacement, and local structure. Both slow and fast dynamics are investigated by calorimetry and neutron scattering in an athermal polystyrene-oligomer blend, and compared to those of a pure 17-mer polystyrene considered to be a reference, of the same Tg. Whereas the blend and the pure 17-mer have the same heat capacity in the glass and in the liquid, their fragilities differ strongly. Thus, the difference in fragility is related to an extra configurational entropy created by the mixing process and acting at a scale much larger than the interchain distance, without affecting the fast dynamics and the structure of the glass.

17.
Nature ; 461(7266): 956-9, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19829376

ABSTRACT

The transport of electrically charged quasiparticles (based on electrons or ions) plays a pivotal role in modern technology as well as in determining the essential functions of biological organisms. In contrast, the transport of magnetic charges has barely been explored experimentally, mainly because magnetic charges, in contrast to electric ones, are generally considered at best to be convenient macroscopic parameters, rather than well-defined quasiparticles. However, it was recently proposed that magnetic charges can exist in certain materials in the form of emergent excitations that manifest like point charges, or magnetic monopoles. Here we address the question of whether such magnetic charges and their associated currents-'magnetricity'-can be measured directly in experiment, without recourse to any material-specific theory. By mapping the problem onto Onsager's theory of electrolytes, we show that this is indeed possible, and devise an appropriate method for the measurement of magnetic charges and their dynamics. Using muon spin rotation as a suitable local probe, we apply the method to a real material, the 'spin ice' Dy(2)Ti(2)O(7) (refs 5-8). Our experimental measurements prove that magnetic charges exist in this material, interact via a Coulomb potential, and have measurable currents. We further characterize deviations from Ohm's law, and determine the elementary unit of magnetic charge to be 5 mu(B) A(-1), which is equal to that recently predicted using the microscopic theory of spin ice. Our measurement of magnetic charge and magnetic current establishes an instance of a perfect symmetry between electricity and magnetism.

18.
Science ; 326(5951): 415-7, 2009 Oct 16.
Article in English | MEDLINE | ID: mdl-19729619

ABSTRACT

Spin-ice materials are magnetic substances in which the spin directions map onto hydrogen positions in water ice. Their low-temperature magnetic state has been predicted to be a phase that obeys a Gauss' law and supports magnetic monopole excitations: in short, a Coulomb phase. We used polarized neutron scattering to show that the spin-ice material Ho2Ti2O7 exhibits an almost perfect Coulomb phase. Our result proves the existence of such phases in magnetic materials and strongly supports the magnetic monopole theory of spin ice.

20.
Phys Rev Lett ; 101(23): 237201, 2008 Dec 05.
Article in English | MEDLINE | ID: mdl-19113586

ABSTRACT

Tb2Sn2O7 has been proposed as an ordered spin ice, but the precise nature of the low temperature magnetic state remains uncertain. Recent independent muon spin relaxation (microSR) investigations suggest the possibility of exotic ground states with static order precluded on time scales longer than 10(-6) s. Here the more conventional hypothesis of canted ferromagnetism is tested by means of microSR with the muons stopped outside the sample, as well as ultralow field bulk magnetization measurements. The field cooled state shows conventional static order, while the zero field cooled state may be interpreted in terms of conventional closed domains. These results rule out purely dynamical ground states and illustrate the value of exterior muon implantation as a complement to the conventional technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...