Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Drug Metab Dispos ; 52(7): 582-596, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38697852

ABSTRACT

The International Consortium for Innovation and Quality in Pharmaceutical Development Transporter Working Group had a rare opportunity to analyze a crosspharma collation of in vitro data and assay methods for the evaluation of drug transporter substrate and inhibitor potential. Experiments were generally performed in accordance with regulatory guidelines. Discrepancies, such as not considering the impact of preincubation for inhibition and free or measured in vitro drug concentrations, may be due to the retrospective nature of the dataset and analysis. Lipophilicity was a frequent indicator of crosstransport inhibition (P-gp, BCRP, OATP1B, and OCT1), with high molecular weight (MW ≥500 Da) also common for OATP1B and BCRP inhibitors. A high level of overlap in in vitro inhibition across transporters was identified for BCRP, OATP1B1, and MATE1, suggesting that prediction of DDIs for these transporters will be common. In contrast, inhibition of OAT1 did not coincide with inhibition of any other transporter. Neutrals, bases, and compounds with intermediate-high lipophilicity tended to be P-gp and/or BCRP substrates, whereas compounds with MW <500 Da tended to be OAT3 substrates. Interestingly, the majority of in vitro inhibitors were not reported to be followed up with a clinical study by the submitting company, whereas those compounds identified as substrates generally were. Approaches to metabolite testing were generally found to be similar to parent testing, with metabolites generally being equally or less potent than parent compounds. However, examples where metabolites inhibited transporters in vitro were identified, supporting the regulatory requirement for in vitro testing of metabolites to enable integrated clinical DDI risk assessment. SIGNIFICANCE STATEMENT: A diverse dataset showed that transporter inhibition often correlated with lipophilicity and molecular weight (>500 Da). Overlapping transporter inhibition was identified, particularly that inhibition of BCRP, OATP1B1, and MATE1 was frequent if the compound inhibited other transporters. In contrast, inhibition of OAT1 did not correlate with the other drug transporters tested.


Subject(s)
Drug Industry , Membrane Transport Proteins , Humans , Drug Industry/methods , Membrane Transport Proteins/metabolism , Drug Development/methods , Drug Interactions/physiology , Pharmaceutical Preparations/metabolism , Biological Transport/physiology , Surveys and Questionnaires , Animals
2.
ALTEX ; 40(3): 408-424, 2023.
Article in English | MEDLINE | ID: mdl-36343109

ABSTRACT

Accurate prediction of pharmacokinetic parameters, such as renal clearance, is fundamental to the development of effective and safe new treatments for patients. However, conventional renal models have a limited ability to predict renal drug secretion, a process that is dependent on transporters in the proximal tubule. Improvements in microphysiological systems (MPS) have extended our in vitro capabilities to predict pharmacokinetic parameters. In this study a kidney-MPS model was developed that successfully recreated renal drug secretion. Human proximal tubule cells grown in the kidney-MPS, resem­bling an in vivo phenotype, actively secreted the organic cation drug metformin and organic anion drug cidofovir, in contrast to cells cultured in conventional culture formats. Metformin and cidofovir renal secretory clearance were predicted from kid­ney-MPS data within 3.3- and 1.3-fold, respectively, of clinically reported values by employing a semi-mechanistic drug distribution model using kidney-MPS drug transport parameters together with in vitro to in vivo extrapolation. This approach introduces an effective application of a kidney-MPS model coupled with pharmacokinetic modelling tools to evaluate and predict renal drug clearance in humans. Kidney-MPS renal clearance predictions can potentially complement pharma-cokinetic animal studies and contribute to the reduction of pre-clinical species use during drug development.


Subject(s)
Metformin , Microphysiological Systems , Animals , Humans , Cidofovir/pharmacology , Kidney/metabolism , Metformin/metabolism , Metformin/pharmacology , Drug Elimination Routes
3.
Mol Pharmacol ; 94(1): 689-699, 2018 07.
Article in English | MEDLINE | ID: mdl-29720497

ABSTRACT

Species differences in renal drug transporters continue to plague drug development with animal models failing to adequately predict renal drug toxicity. For example, adefovir, a renally excreted antiviral drug, failed clinical studies for human immunodeficiency virus due to pronounced nephrotoxicity in humans. In this study, we demonstrated that there are large species differences in the kinetics of interactions of a key class of antiviral drugs, acyclic nucleoside phosphonates (ANPs), with organic anion transporter 1 [(OAT1) SLC22A6] and identified a key amino acid residue responsible for these differences. In OAT1 stably transfected human embryonic kidney 293 cells, the Km value of tenofovir for human OAT1 (hOAT1) was significantly lower than for OAT1 orthologs from common preclinical animals, including cynomolgus monkey, mouse, rat, and dog. Chimeric and site-directed mutagenesis studies along with comparative structure modeling identified serine at position 203 (S203) in hOAT1 as a determinant of its lower Km value. Furthermore, S203 is conserved in apes, and in contrast alanine at the equivalent position is conserved in preclinical animals and Old World monkeys, the most related primates to apes. Intriguingly, transport efficiencies are significantly higher for OAT1 orthologs from apes with high serum uric acid (SUA) levels than for the orthologs from species with low serum uric acid levels. In conclusion, our data provide a molecular mechanism underlying species differences in renal accumulation of nephrotoxic ANPs and a novel insight into OAT1 transport function in primate evolution.


Subject(s)
Drug-Related Side Effects and Adverse Reactions/metabolism , Kidney/drug effects , Kidney/metabolism , Organic Anion Transport Protein 1/metabolism , Adenine/adverse effects , Adenine/analogs & derivatives , Amino Acids/metabolism , Animals , Antiviral Agents/adverse effects , Cell Line , Cercopithecidae , Dogs , HEK293 Cells , Humans , Kinetics , Macaca fascicularis , Mice , Organophosphonates/adverse effects , Organophosphonates/metabolism , Rats , Species Specificity , Uric Acid/blood
4.
Curr Drug Metab ; 19(4): 310-326, 2018.
Article in English | MEDLINE | ID: mdl-29357789

ABSTRACT

BACKGROUND: Renal proximal tubule (PT) epithelial cells, expressing uptake and efflux transporters at basolateral and apical membranes, are the location of active renal drug secretion and reabsorption. In addition to singly transfected cells, an in vitro renal cell-based model is a requirement to study the active renal secretion of drugs, drug-drug interactions (DDIs), drug-induced kidney injury, nephrotoxicity holistically and potentially renal replacement therapies. OBJECTIVES: So far, two-dimensional (2D) cell culture of primary and immortalized PT cells has been the only tool to study drugs active secretion, interactions and nephrotoxicity, however a number of in vivo characteristics of cells such as drug transporter expression and function, along with morphological features are lost during in vitro cell culture. Cellular microenvironment, extracellular matrix, cell-cell interactions, microfluidic environment and tubular architecture are the factors lacking in 2D cell culture. Currently, there are a few 3D cell culture platforms mimicking the in vivo conditions of PT cells and thus potentially enabling the necessary factors for the full functional PT cells. CONCLUSION: In this review, we address in vivo physiological and morphological characteristics of PT cells, comparing their available sources and remaining in vivo features. In addition, 2D and 3D cell culture platforms and the influence of cell culture architecture on the physiological characteristics of cells are reviewed. Finally, future perspective of 3D models, kidney and multi organs on a chip, generation of kidney organoids, other ex vivo renal models and their capabilities to study drug disposition and in vitro-in vivo extrapolation are described.


Subject(s)
Epithelial Cells/drug effects , Epithelial Cells/physiology , Kidney Tubules, Proximal/cytology , Animals , Cell Culture Techniques , Cellular Microenvironment , Humans , Kidney Tubules, Proximal/physiology
5.
Mol Pharm ; 9(5): 1199-212, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22489626

ABSTRACT

The Biopharmaceutics Classification System (BCS) is a scientific framework that provides a basis for predicting the oral absorption of drugs. These concepts have been extended in the Biopharmaceutics Drug Disposition Classification System (BDDCS) to explain the potential mechanism of drug clearance and understand the effects of uptake and efflux transporters on absorption, distribution, metabolism, and elimination. The objective of present work is to establish criteria for provisional biopharmaceutics classification using pH-dependent passive permeability and aqueous solubility data generated from high throughput screening methodologies in drug discovery settings. The apparent permeability across monolayers of clonal cell line of Madin-Darby canine kidney cells, selected for low endogenous efflux transporter expression, was measured for a set of 105 drugs, with known BCS and BDDCS class. The permeability at apical pH 6.5 for acidic drugs and at pH 7.4 for nonacidic drugs showed a good correlation with the fraction absorbed in human (Fa). Receiver operating characteristic (ROC) curve analysis was utilized to define the permeability class boundary. At permeability ≥ 5 × 10(-6) cm/s, the accuracy of predicting Fa of ≥ 0.90 was 87%. Also, this cutoff showed more than 80% sensitivity and specificity in predicting the literature permeability classes (BCS), and the metabolism classes (BDDCS). The equilibrium solubility of a subset of 49 drugs was measured in pH 1.2 medium, pH 6.5 phosphate buffer, and in FaSSIF medium (pH 6.5). Although dose was not considered, good concordance of the measured solubility with BCS and BDDCS solubility class was achieved, when solubility at pH 1.2 was used for acidic compounds and FaSSIF solubility was used for basic, neutral, and zwitterionic compounds. Using a cutoff of 200 µg/mL, the data set suggested a 93% sensitivity and 86% specificity in predicting both the BCS and BDDCS solubility classes. In conclusion, this study identified pH-dependent permeability and solubility criteria that can be used to assign provisional biopharmaceutics class at early stage of the drug discovery process. Additionally, such a classification system will enable discovery scientists to assess the potential limiting factors to oral absorption, as well as help predict the drug disposition mechanisms and potential drug-drug interactions.


Subject(s)
Biopharmaceutics/methods , Animals , Cell Line , Dogs , Drug Discovery/methods , Hydrogen-Ion Concentration , Permeability , Solubility
6.
Drug Metab Dispos ; 40(6): 1085-92, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22381335

ABSTRACT

To assess the feasibility of using sandwich-cultured human hepatocytes (SCHHs) as a model to characterize transport kinetics for in vivo pharmacokinetic prediction, the expression of organic anion-transporting polypeptide (OATP) proteins in SCHHs, along with biliary efflux transporters, was confirmed quantitatively by liquid chromatography-tandem mass spectrometry. Rifamycin SV (Rif SV), which was shown to completely block the function of OATP transporters, was selected as an inhibitor to assess the initial rates of active uptake. The optimized SCHH model was applied in a retrospective investigation of compounds with known clinically significant OATP-mediated uptake and was applied further to explore drug-drug interactions (DDIs). Greater than 50% inhibition of active uptake by Rif SV was found to be associated with clinically significant OATP-mediated DDIs. We propose that the in vitro active uptake value therefore could serve as a cutoff for class 3 and 4 compounds of the Biopharmaceutics Drug Disposition Classification System, which could be integrated into the International Transporter Consortium decision tree recommendations to trigger clinical evaluations for potential DDI risks. Furthermore, the kinetics of in vitro hepatobiliary transport obtained from SCHHs, along with protein expression scaling factors, offer an opportunity to predict complex in vivo processes using mathematical models, such as physiologically based pharmacokinetics models.


Subject(s)
Drug Interactions/physiology , Hepatocytes/metabolism , Pharmaceutical Preparations/metabolism , Cells, Cultured , Drug Evaluation, Preclinical/methods , Humans , Organic Anion Transporters/metabolism , Retrospective Studies
7.
Drug Metab Dispos ; 40(5): 1007-17, 2012 May.
Article in English | MEDLINE | ID: mdl-22344703

ABSTRACT

With efforts to reduce cytochrome P450-mediated clearance (CL) during the early stages of drug discovery, transporter-mediated CL mechanisms are becoming more prevalent. However, the prediction of plasma concentration-time profiles for such compounds using physiologically based pharmacokinetic (PBPK) modeling is far less established in comparison with that for compounds with passively mediated pharmacokinetics (PK). In this study, we have assessed the predictability of human PK for seven organic anion-transporting polypeptide (OATP) substrates (pravastatin, cerivastatin, bosentan, fluvastatin, rosuvastatin, valsartan, and repaglinide) for which clinical intravenous data were available. In vitro data generated from the sandwich culture human hepatocyte system were simultaneously fit to estimate parameters describing both uptake and biliary efflux. Use of scaled active uptake, passive distribution, and biliary efflux parameters as inputs into a PBPK model resulted in the overprediction of exposure for all seven drugs investigated, with the exception of pravastatin. Therefore, fitting of in vivo data for each individual drug in the dataset was performed to establish empirical scaling factors to accurately capture their plasma concentration-time profiles. Overall, active uptake and biliary efflux were under- and overpredicted, leading to average empirical scaling factors of 58 and 0.061, respectively; passive diffusion required no scaling factor. This study illustrates the mechanistic and model-driven application of in vitro uptake and efflux data for human PK prediction for OATP substrates. A particular advantage is the ability to capture the multiphasic plasma concentration-time profiles for such compounds using only preclinical data. A prediction strategy for novel OATP substrates is discussed.


Subject(s)
Drug Discovery/methods , Hepatocytes/metabolism , Models, Biological , Organic Anion Transporters/metabolism , Pharmaceutical Preparations/metabolism , Pharmacokinetics , Cell Culture Techniques , Cells, Cultured , Chemistry, Physical , Chromatography, High Pressure Liquid , Computer Simulation , Cryopreservation , Hepatocytes/cytology , Humans , Injections, Intravenous , Organ Specificity , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Predictive Value of Tests , Substrate Specificity , Tissue Distribution
8.
Drug Metab Dispos ; 40(2): 407-11, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22031626

ABSTRACT

Sandwich-cultured human hepatocytes (SCHH) have been widely used for in vitro assessments of biliary clearance. However, the modulation of metabolism enzymes has not been fully evaluated in this system. The present study was therefore undertaken to determine the activity of cytochrome P450 (P450) 1A2, 2C8, 2C9, 2C19, 2D6, and 3A and to evaluate the impact of 1-aminobenzotriazole (ABT) on hepatic uptake and biliary excretion in SCHH. The SCHH maintained integrity and viability as determined by lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assays conducted over the culture period. Although all assessed P450 activity decreased in day 2 SCHH, the extent of the decrease and the subsequent rebound in activity varied across the different isoforms. Day 5 CYP1A2 activity was approximately 2.5-fold higher than day 1 activity, whereas the CYP3A and CYP2C9 activities were 90 and 60% of the day 1 levels, respectively. In contrast, the initial CYP2C8, CYP2C19, and CYP2D6 activity losses did not rebound over the 5-day culture period. Furthermore, ABT was not found to have an effect, whether directly or indirectly as a P450 inactivator, with respect to the hepatic transport of rosuvastatin, atrovastatin, and midazolam in SCHH. Taken together, these results suggest that the SCHH model is a reliable tool to characterize hepatic uptake and biliary excretion. Due to the differential modulation of P450 activity, SCHH may not be considered a suitable tool for metabolic stability assessments with compounds predominantly cleared by certain P450 enzymes.


Subject(s)
Bile/metabolism , Cytochrome P-450 Enzyme System/metabolism , Enzyme Inhibitors/pharmacology , Hepatocytes/drug effects , Hepatocytes/metabolism , Models, Biological , Triazoles/pharmacology , Anti-Anxiety Agents/metabolism , Anticholesteremic Agents/metabolism , Atorvastatin , Biological Transport/drug effects , Cell Survival , Cells, Cultured , Cytochrome P-450 Enzyme Inhibitors , Fluorobenzenes/metabolism , Hepatocytes/enzymology , Heptanoic Acids/metabolism , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Midazolam/metabolism , Pyrimidines/metabolism , Pyrroles/metabolism , Rosuvastatin Calcium , Sulfonamides/metabolism , Time Factors
9.
Xenobiotica ; 42(1): 28-45, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22077101

ABSTRACT

Over the last two decades the impact on drug pharmacokinetics of the organic anion transporting polypeptides (OATPs: OATP-1B1, 1B3 and 2B1), expressed on the sinusoidal membrane of the hepatocyte, has been increasingly recognized. OATP-mediated uptake into the hepatocyte coupled with subsequent excretion into bile via efflux proteins, such as MRP2, is often referred to as hepatobiliary excretion. OATP transporter proteins can impact some drugs in several ways including pharmacokinetic variability, pharmacodynamic response and drug-drug interactions (DDIs). The impact of transporter mediated hepatic clearance is illustrated with case examples, from the literature and also from the Pfizer portfolio. The currently available in vitro techniques to study the hepatic transporter proteins involved in the hepatobiliary clearance of drugs are reviewed herein along with recent advances in using these in vitro data to predict the human clearance of compounds recognized by hepatic uptake transporters.


Subject(s)
Biliary Tract/metabolism , Liver/metabolism , Organic Anion Transporters/metabolism , Pharmaceutical Preparations/metabolism , Adrenergic alpha-1 Receptor Antagonists/pharmacokinetics , Angiotensin Receptor Antagonists/pharmacokinetics , Biliary Tract/enzymology , Drug Interactions , Drug and Narcotic Control , Histamine H1 Antagonists/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Liver/enzymology , Pharmacogenetics , Pharmacokinetics , Species Specificity
10.
Biochem Pharmacol ; 83(2): 279-85, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22062654

ABSTRACT

The ATP-binding cassette (ABC) transporters breast cancer resistance protein (BCRP), multidrug resistance-associated protein 2 (MRP2), and P-glycoprotein (Pgp) are important in the distribution and elimination of many drugs and endogenous metabolites. Due to their membrane location and hydrophobicity it is difficult to generate purified protein standards to quantify these transporters in human tissues. The present study generated transporter proteins fused with the S-peptide of ribonuclease for use as standards in immunoquantification in human liver and small intestine. Quantification of the S•tag™, a 15 amino acid peptide, is based on the formation of a functional ribonuclease activity upon its high affinity reconstitution with ribonuclease S-protein. S-tagged transporters were used as full-length protein standards in the immunoquantification of endogenous BCRP, MRP2, and Pgp levels in 14 duodenum and 13 liver human tissue samples. Expression levels in the duodenum were 305±248 (BCRP), 66±70 (MRP2), and 275±205 (Pgp) fmoles per cm(2). Hepatic levels were 2.6±0.9 (BCRP), 19.8±10.5 (MRP2), and 26.1±10.1 (total Pgp) pmoles per g of liver. The mean hepatic scaling factor was 35.8mg crude membrane per g of liver, and the mean duodenal scaling factor was 1.3mg crude membrane per cm(2) mucosal lining. Interindividual variability was greater in duodenal samples than liver samples. It is hoped that this innovative method of quantifying these transporters (and other membrane proteins) will improve in vivo-in vitro extrapolation and in silico prediction of drug absorption and elimination, thus supporting drug development.


Subject(s)
ATP-Binding Cassette Transporters/biosynthesis , ATP-Binding Cassette Transporters/chemistry , Duodenum/metabolism , Gene Expression Regulation , Liver/metabolism , Peptide Fragments/standards , Ribonuclease, Pancreatic/standards , ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/standards , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/standards , Duodenum/chemistry , HEK293 Cells , Humans , Immunoblotting/methods , Immunoblotting/standards , Liver/chemistry , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/biosynthesis , Multidrug Resistance-Associated Proteins/chemistry , Multidrug Resistance-Associated Proteins/standards , Neoplasm Proteins/biosynthesis , Peptide Fragments/chemistry , Predictive Value of Tests , Reproducibility of Results , Ribonuclease, Pancreatic/chemistry
11.
Br J Clin Pharmacol ; 72(2): 235-46, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21392072

ABSTRACT

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: This study provides antimuscarinic agents for overactive bladder (OAB) display variable association with side effects mediated by the central nervous system (CNS), which may be of particular concern in the elderly. Adverse effects on CNS functioning are related to muscarinic receptor subtype selectivity and the ability of the agent to cross the blood-brain barrier, where P-gp plays a role in limiting permeability. WHAT THIS STUDY ADDS: This study provides a parallel investigation of CNS penetration of antimuscarinic OAB agents in vivo and assessment of physical properties and permeability in cell monolayers in vitro. It adds further understanding of the roles of passive transcellular permeability and P-gp in determining CNS penetration of antimuscarinic OAB agents. It also enables a comparison of CNS side-effect profiles of OAB agents with preclinical CNS penetration data. AIMS: To assess and compare the mechanisms of central nervous system (CNS) penetration of antimuscarinic overactive bladder (OAB) agents. METHODS: Physical properties were computed or compiled from the literature. Rats were administered 5-hydroxymethyl tolterodine (HMT), darifenacin, oxybutynin, solifenacin, tolterodine or trospium subcutaneously. At 1 h postdose, plasma, brain and cerebrospinal fluid (CSF) concentrations were determined using LC-MS/MS assays. Brain and plasma protein binding were determined in vitro. Permeability in the presence and absence of the efflux transporter P-glycoprotein (P-gp) was assessed in RRCK and MDCK-MDR1 transwell assays. RESULTS: Oxybutynin displayed extensive CNS penetration, with brain:plasma ratios (B:P), unbound brain:unbound plasma ratios (Kp,free) and CSF:free plasma ratios each >1. Tolterodine (B:P = 2.95, Kp,free = 0.23 and CSF:free plasma = 0.16) and solifenacin (B:P = 3.04, Kp,free = 0.28 and CSF:free plasma = 1.41) showed significant CNS penetration but with some restriction from CNS as indicated by Kp,free values significantly <1. 5-HMT, darifenacin and trospium displayed much lower B:P (0.03-0.16), Kp,free (0.01-0.04) and CSF:free plasma (0.004-0.06), consistent with poor CNS penetration. Permeability in RRCK cells was low for trospium (0.63 × 10(-6) cm s(-1) ), moderate for 5-HMT (11.7 × 10(-6) cm s(-1) ) and high for darifenacin, solifenacin, tolterodine and oxybutynin (21.5-38.2 × 10(-6) cm s(-1) ). In MDCK-MDR1 cells 5-HMT, darifenacin and trospium, were P-gp substrates, whereas oxybutynin, solifenacin and tolterodine were not P-gp substrates. CONCLUSIONS: Brain penetration was low for antimuscarinics that are P-gp substrates (5-HMT, darifenacin and trospium), and significant for those that are not P-gp substrates (oxybutynin, solifenacin and tolterodine). CNS adverse events reported in randomized controlled clinical trials show general alignment with the preclinical data described in this study.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Muscarinic Antagonists/pharmacokinetics , Urinary Bladder, Overactive/drug therapy , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Benzhydryl Compounds/pharmacokinetics , Benzofurans/pharmacokinetics , Cell Line , Chromatography, High Pressure Liquid , Cresols/pharmacokinetics , Humans , Male , Mandelic Acids/pharmacokinetics , Phenylpropanolamine/pharmacokinetics , Pyrrolidines/pharmacokinetics , Quinuclidines/pharmacokinetics , Randomized Controlled Trials as Topic , Rats , Rats, Sprague-Dawley , Receptors, Muscarinic/metabolism , Solifenacin Succinate , Tandem Mass Spectrometry , Tetrahydroisoquinolines/pharmacokinetics , Tolterodine Tartrate
12.
Curr Drug Metab ; 11(9): 730-42, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21189135

ABSTRACT

While the oral exposure continues to be the major focus, the chemical space of recent drug discovery is apparently trending towards more hydrophilic libraries, due to toxicity and drug-interactions issues usually reported with lipophilic drugs. This trend may bring in challenges in optimizing the membrane permeability and thus the oral absorption of new chemical entities. It is now apparent that the influx transporters such as peptide transporter 1 (PepT1), organic-anion transporting polypeptides (OATPs), monocarboxylate transporters (MCT1) facilitate, while efflux pumps (e.g. P-glycoprotein (P-gp), breast cancer resistance protein (BCRP)) limit oral absorption of drugs. This review will focus on intestinal transporters that may be targeted to achieve optimal clinical oral plasma exposure for hydrophilic and polar drugs. The structure, mechanism, structure-activity relationships and the clinical examples on the functional role of these transporters in the drug absorption was discussed. Physicochemical properties, lipophilicity and hydrogen-bonding ability, show good correlation with transport activity for efflux pumps. Although several attempts were made to describe the structural requirements based on pharmacophore modeling, lack of crystal structure of transporters impeded identification of definite properties for transporter affinity and favorable transport activity. Furthermore, very few substrate drug datasets are currently available for the influx transporters to derive any clear relationships. Unfortunately, gaps also exist in the translation of in vitro end points to the clinical relevance of the transporter(s) involved. However, it may be qualitatively generalized that targeting intestinal transporters are relevant for drugs with high solubility and/or low passive permeability i.e. a class of compounds identified as Class III and Class IV according to the Biopharmaceutic Classification System (BCS) and the Biopharmaceutic Drug Disposition Classification System (BDDCS). A careful considerations to oral dose based on the transporter clearance (V(max)/K(m)) capacity is needed in targeting a particular transporter. For example, low affinity and high capacity uptake transporters such as PEPT1 and MCT1 may be targeted for high oral dose drugs.


Subject(s)
Intestinal Mucosa/metabolism , Membrane Transport Proteins/metabolism , Models, Biological , Pharmaceutical Preparations/administration & dosage , Pharmacokinetics , Administration, Oral , Animals , Biological Availability , Humans , Intestinal Absorption , Intestinal Mucosa/enzymology , Pharmaceutical Preparations/classification , Prodrugs/administration & dosage , Prodrugs/pharmacokinetics
13.
Mol Pharm ; 7(2): 398-411, 2010 Apr 05.
Article in English | MEDLINE | ID: mdl-20025245

ABSTRACT

The objective of this work was to further investigate the reasons for disconcordant clinical digoxin drug interactions (DDIs) particularly for false negative where in vitro data suggests no P-glycoprotein (P-gp) related DDI but a clinically relevant DDI is evident. Applying statistical analyses of binary classification and receiver operating characteristic (ROC), revised cutoff values for ratio of [I]/IC(50) < 0.1 and [I(2)]/IC(50) < 5 were identified to minimize the error rate, a reduction of false negative rate to 9% from 36% (based on individual ratios). The steady state total C(max) at highest dose of the inhibitor is defined as [I] and the ratio of the nominal maximal gastrointestinal concentration determined for highest dose per 250 mL volume defined [I(2)](.) We also investigated the reliability of the clinical data to see if recommendations can be made on values that would allow predictions of 25% change in digoxin exposure. The literature derived clinical digoxin interaction studies were statistically powered to detect relevant changes in exposure associated with digitalis toxicities. Our analysis identified that many co-meds administered with digoxin are cardiovascular (CV) agents. Moreover, our investigations also suggest that the presence of CV agents may alter cardiac output and/or kidney function that may act alone or are additional components to enhance digoxin exposure along with P-gp interaction. While we recommend digoxin as the probe substrate to define P-gp inhibitory potency for clinical assessment, we observed high concordance in P-gp inhibitory potency for calcein AM as a probe substrate.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Digoxin/metabolism , Drug Interactions , Pharmaceutical Preparations/metabolism , Clinical Trials as Topic , Humans , Inhibitory Concentration 50
14.
J Pharm Sci ; 98(12): 4914-27, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19373887

ABSTRACT

The utility of the diaminoquinazoline derivative CP-100,356 as an in vivo probe to selectively assess MDR1/BCRP-mediated drug efflux was examined in the rat. CP-100,356 was devoid of inhibition (IC(50) >50 microM) against major human P450 enzymes including P4503A4. In human MDR1-transfected MDCKII cells, CP-100,356 inhibited acetoxymethyl calcein (calcein-AM) uptake (IC(50) approximately 0.5 +/- 0.07 microM) and digoxin transport (IC(50) approximately 1.2 +/- 0.1 microM). Inhibition of prazosin transport (IC(50) approximately 1.5 +/- 0.3 microM) in human BCRP-transfected MDCKII cells by CP-100,356 confirmed the dual MDR1/BCRP inhibitory properties. CP-100,356 was a weak inhibitor of OATP1B1 (IC(50) approximately 66 +/- 1.1 microM) and was devoid of MRP2 inhibition (IC(50) >15 microM). In vivo inhibitory effects of CP-100,356 in rats were examined after coadministration with MDR1 substrate fexofenadine and dual MDR1/BCRP substrate prazosin. Coadministration with increasing doses of CP-100,356 resulted in dramatic increases in systemic exposure of fexofenadine (36- and 80-fold increase in C(max) and AUC at a CP-100,356 dose of 24 mg/kg). Significant differences in prazosin pharmacokinetics were also discernible in CP-100,356-pretreated rats as reflected from a 2.6-fold increase in AUC. Coadministration of CP-100,356 and P4503A substrate midazolam did not result in elevations in systemic exposure of midazolam in the rat. The in vivo methodology should have utility in drug discovery in selective and facile assessment of the role of MDR1 and BCRP efflux transporters in oral absorption of new drug candidates.


Subject(s)
Calcium Channel Blockers/pharmacology , Carrier Proteins/metabolism , Intestinal Absorption/drug effects , Isoquinolines/pharmacology , Pharmaceutical Preparations/metabolism , Quinazolines/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/antagonists & inhibitors , Animals , Anti-Allergic Agents/pharmacokinetics , Area Under Curve , CHO Cells , Cricetinae , Cricetulus , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacology , Estradiol/pharmacokinetics , Hypnotics and Sedatives/pharmacokinetics , Male , Midazolam/pharmacokinetics , Prazosin/pharmacokinetics , Rats , Rats, Sprague-Dawley , Sympatholytics/pharmacokinetics , Terfenadine/analogs & derivatives , Terfenadine/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...