Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37761820

ABSTRACT

The hypermethylation status of the promoter region of the breast cancer 1 (BRCA1), a well-known tumor suppressor gene, has been extensively investigated in the last two decades as a potential biomarker for breast cancer. In this retrospective study, we investigated the prevalence of BRCA1 promoter methylation in 84 human breast tissues, and we correlated this epigenetic silencing with the clinical and histopathological parameters of breast cancer. We used methylation-specific PCR (MSP) to analyze BRCA1 promoter hypermethylation in 48 malignant breast tumors (MBTs), 15 normal adjacent tissues (NATs), and 21 benign breast lesions (BBLs). The results showed that BRCA1 promoter hypermethylation was higher in MBTs (20/48; 41.67%) and NATs (7/15; 46.67%) compared to BBLs (4/21; 19.05%). The high percentage of BRCA1 hypermethylation in the histologically normal adjacent tissues to the tumors (NATs) suggests the involvement of this epigenetic silencing as a potential biomarker of the early genomic instability in NATs surrounding the tumors. The detection of BRCA1 promoter hypermethylation in BBLs reinforces this suggestion, knowing that a non-negligible rate of benign breast lesions was reported to evolve into cancer. Moreover, our results indicated that the BRCA1 promoter hypermethylated group of MBTs exhibited higher rates of aggressive features, as indicated by the SBR III grade (14/19; 73.68%), elevated Ki67 levels (13/16; 81.25%), and Her2 receptor overexpression (5/20; 25%). Finally, we observed a concordance (60%) in BRCA1 promoter hypermethylation status between malignant breast tumors and their paired histologically normal adjacent tissues. This study highlights the role of BRCA1 promoter hypermethylation as a potential useful biomarker of aggressiveness in MBTs and as an early marker of genomic instability in both histological NATs and BBLs.

2.
Curr Issues Mol Biol ; 45(7): 5811-5823, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37504283

ABSTRACT

The comparative analysis of the expression of the reactive oxygen species-generating NADPH oxidase NOX4 from TCGA data shows that the NOX4 transcript is upregulated in papillary thyroid carcinomas (PTC)-BRAFV600E tumors compared to PTC-BRAFwt tumors. However, a comparative analysis of NOX4 at the protein level in malignant and non-malignant tumors is missing. We explored NOX4 protein expression by immunohistochemistry staining in malignant tumors (28 classical forms of PTC (C-PTC), 17 follicular variants of PTC (F-PTC), and three anaplastic thyroid carcinomas (ATCs)) and in non-malignant tumors (six lymphocytic thyroiditis, four Graves' disease, ten goiters, and 20 hyperplasias). We detected the BRAFV600E mutation by Sanger sequencing and digital droplet PCR. The results show that NOX4 was found to be higher (score ≥ 2) in C-PTC (92.9%) compared to F-PTC (52.9%) and ATC (33.3%) concerning malignant tumors. Interestingly, all C-PTC-BRAFV600E expressed a high score for NOX4 at the protein level, strengthening the positive correlation between the BRAFV600E mutation and NOX4 expression. In addition, independent of the mutational status of BRAF, we observed that 90% of C-PTC infiltrating tumors showed high NOX4 expression, suggesting that NOX4 may be considered a complementary biomarker in PTC aggressiveness. Interestingly, NOX4 was highly expressed in non-malignant thyroid diseases with different subcellular localizations.

SELECTION OF CITATIONS
SEARCH DETAIL
...