Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 21: 4647-4662, 2023.
Article in English | MEDLINE | ID: mdl-37841331

ABSTRACT

Many Bacillus species are essential antibacterial agents, but their antibiosis potential still needs to be elucidated to its full extent. Here, we isolated a soil bacterium, BP9, which has significant antibiosis activity against fungal and bacterial pathogens. BP9 improved the growth of wheat seedlings via active colonization and demonstrated effective biofilm and swarming activity. BP9 sequenced genome contains 4282 genes with a mean G-C content of 45.94% of the whole genome. A single copy concatenated 802 core genes of 28 genomes, and their calculated average nucleotide identity (ANI) discriminated the strain BP9 from Bacillus licheniformis and classified it as Bacillus paralicheniformis. Furthermore, a comparative pan-genome analysis of 40 B. paralicheniformis strains suggested that the genetic repertoire of BP9 belongs to open-type genome species. A comparative analysis of a pan-genome dataset using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Gene groups (COG) revealed the diversity of secondary metabolic pathways, where BP9 distinguishes itself by exhibiting a greater prevalence of loci associated with the metabolism and transportation of organic and inorganic substances, carbohydrate and amino acid for effective inhabitation in diverse environments. The primary secondary metabolites and their genes involved in synthesizing bacillibactin, fencing, bacitracin, and lantibiotics were identified as acquired through a recent Horizontal gene transfer (HGT) event, which contributes to a significant part of the strain`s antimicrobial potential. Finally, we report some genes essential for plant-host interaction identified in BP9, which reduce spore germination and virulence of multiple fungal and bacterial species. The effective colonization, diverse predicted metabolic pathways and secondary metabolites (antibiotics) suggest testing the suitability of strain BP9 as a potential bio-preparation in agricultural fields.

2.
Front Plant Sci ; 14: 1197706, 2023.
Article in English | MEDLINE | ID: mdl-37476164

ABSTRACT

Pseudomonas syringae pv. tomato is the causal agent of bacterial speck of tomato, an important disease that results in severe crop production losses worldwide. Currently, two races within phylogroup 01a (PG01a) are described for this pathogen. Race 0 strains have avirulence genes for the expression of type III system-associated effectors AvrPto1 and AvrPtoB, that are recognized and targeted by the effector-triggered immunity in tomato cultivars having the pto race-specific resistance gene. Race 1 strains instead lack the avrPto1 and avrPtoB genes and are therefore capable to aggressively attack all tomato cultivars. Here, we have performed the complete genome sequencing and the analysis of P. syringae pv. tomato strain DAPP-PG 215, which was described as a race 0 strain in 1996. Our analysis revealed that its genome comprises a 6.2 Mb circular chromosome and two plasmids (107 kb and 81 kb). The results indicate that the strain is phylogenetically closely related to strains Max13, K40, T1 and NYS-T1, all known race 1 strains. The chromosome of DAPP-PG 215 encodes race 1-associated genes like avrA and hopW1 and lacks race 0-associated genes like hopN1, giving it a race 1 genetic background. However, the genome harbors a complete ortholog of avrPto1, which allows the strain to display a race 0 phenotype. Comparative genomics with several PG01a genomes revealed that mobile DNA elements are rather involved in the evolution of the two different races.

3.
Antibiotics (Basel) ; 12(5)2023 May 22.
Article in English | MEDLINE | ID: mdl-37237846

ABSTRACT

Providencia stuartii is a member of the Morganellaceae family, notorious for its intrinsic resistance to several antibiotics, including last-resort drugs such as colistin and tigecycline. Between February and March 2022, a four-patient outbreak sustained by P. stuartii occurred in a hospital in Rome. Phenotypic analyses defined these strains as eXtensively Drug-Resistant (XDR). Whole-genome sequencing was performed on the representative P. stuartii strains and resulted in fully closed genomes and plasmids. The genomes were highly related phylogenetically and encoded various virulence factors, including fimbrial clusters. The XDR phenotype was primarily driven by the presence of the blaNDM-1 metallo-ß-lactamase alongside the rmtC 16S rRNA methyltransferase, conferring resistance to most ß-lactams and every aminoglycoside, respectively. These genes were found on an IncC plasmid that was highly related to an NDM-IncC plasmid retrieved from a ST15 Klebsiella pneumoniae strain circulating in the same hospital two years earlier. Given its ability to acquire resistance plasmids and its intrinsic resistance mechanisms, P. stuartii is a formidable pathogen. The emergence of XDR P. stuartii strains poses a significant public health threat. It is essential to monitor the spread of these strains and develop new strategies for their control and treatment.

4.
J Microbiol Methods ; 199: 106525, 2022 08.
Article in English | MEDLINE | ID: mdl-35738493

ABSTRACT

Streptobacillus (S.) moniliformis is the most important pathogen causing rat bite fever (RBF) worldwide. This zoonotic pathogen is understudied mainly due to difficulties in culturing S. moniliformis as a fastidious microorganism. Therefore, advances in molecular detection techniques are highly needed, especially with regard to the widespread availability of real-time quantitative (q) PCR in laboratories. In this study, we aimed to develop a qPCR for the identification of Streptobacillus species and quantification of S. moniliformis in clinical samples, especially those derived from tissue samples of animal origin. We optimized a previously described PCR protocol in order to develop a qPCR, which can detect different Streptobacillus species with high specificity and is simultaneously able to quantitate S. moniliformis in different clinical matrices. The qPCR exhibited a limit of detection (LOD) of 21 copies/reaction representing ~4-5 streptobacilli, while the limit of quantification (LOQ) was 2.1 × 103 copies/reaction. It was also more sensitive than conventional PCR by two orders of magnitude and proved to have a substantial agreement (Kappa 0.74) compared to it with a superior detection rate in 374 samples from wild rats, laboratory rats and animals from holdings of wild-trapped rats. To conclude, the qPCR described in this study is an important molecular tool that is able to quantify S. moniliformis in tissue samples of animal origin. It represents a suitable tool for future establishment and evaluation of other molecular assays that are highly needed for a better understanding of epidemiology and pathophysiology of RBF. In experimental studies, it will also be useful for titration purposes since the quantification of the organism using classical plate counting technique is problematic and inaccurate.


Subject(s)
Rat-Bite Fever , Streptobacillus , Animals , Nucleic Acid Amplification Techniques , Rat-Bite Fever/diagnosis , Rat-Bite Fever/etiology , Rats , Real-Time Polymerase Chain Reaction , Streptobacillus/genetics
5.
Antonie Van Leeuwenhoek ; 115(8): 1059-1072, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35732971

ABSTRACT

Four novel strains were isolated: PWU4T and PWU20T were both from soil in Germany, PWU5T was isolated from soil in India and PWU37T was obtained from sheep faeces collected on the Island of Crete. Cells of each were observed to be Gram-negative, strictly aerobic, rod shaped, and to grow optimally between 28 and 34 °C, between pH 7.0 and 8.0 and without the addition of NaCl. The strains were found to be catalase and oxidase-negative and able to grow on most mono- and disaccharides, a few polysaccharides and organic acids. Their predominant menaquinone was identified as MK-7. Their major fatty acids were identified as C16:1 ω7c (PWU4T and PWU20T) and C16:1 ω5c (PWU5T and PWU37T). The DNA G + C contents of strains PWU4T, PWU20T, PWU5T and PWU37T were determined to be 50.2 mol%, 51.6 mol %, 39.8 mol% and 53.8 mol%, respectively. The 16S rRNA gene sequence analysis revealed that the close relatives Ohtaekwangia koreensis 3B-2T and Ohtaekwangia kribbensis 10AOT share less than 93.8% sequence similarity. The strains were classified in two groups, where PWU4T and PWU20T share 93.0% sequence similarity, and PWU5T and PWU37T share 97.5% sequence similarity. However, the members of each group were concluded to represent different species based on the low average nucleotide identity (ANI) of their genomes, 69.7% and 83.8%, respectively. We propose that the four strains represent four novel species of two new genera in the family Cytophagaceae. The type species of the novel genus Chryseosolibacter is Chryseosolibacter histidini gen. nov., sp. nov. with the type strain PWU4T (= DSM 111594T = NCCB 100798T), whilst strain PWU20T (= DSM 111597T = NCCB 100800T) is the type strain of a second species, Chryseosolibacter indicus sp. nov. The type species of the novel genus Dawidia is Dawidia cretensis gen. nov., sp. nov. with the type strain PWU5T (= DSM 111596T = NCCB 100799T), whilst strain PWU37T (= DSM 111595T = NCCB 100801T) is the type stain of a second species, Dawidia soli sp. nov.


Subject(s)
Cytophagaceae , Animals , Bacterial Typing Techniques , DNA, Bacterial/genetics , Ecosystem , Fatty Acids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sheep/genetics , Soil , Vitamin K 2/analysis
6.
Microorganisms ; 10(4)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35456775

ABSTRACT

Halophilic sulfur-oxidizing bacteria belonging to the genus Guyparkeria occur at both marine and terrestrial habitats. Common physiological characteristics displayed by Guyparkeria isolates have not yet been linked to the metabolic potential encoded in their genetic inventory. To provide a genetic basis for understanding the metabolism of Guyparkeria, nine genomes were compared to reveal the metabolic capabilities and adaptations. A detailed account is given on Guyparkeria's ability to assimilate carbon by fixation, to oxidize reduced sulfur, to oxidize thiocyanate, and to cope with salinity stress.

7.
Antonie Van Leeuwenhoek ; 115(7): 857-870, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35489013

ABSTRACT

Bovine mastitis causes enormous economic losses in the dairy industry with Streptococcus uberis as one of the most common bacterial pathogens causing clinical and subclinical variations. In most cases mastitis can be cured by intramammary administration of antimicrobial agents. However, the severity of the clinical manifestations can vary greatly from mild to severe symtoms. In this study, a comparative genomic analysis of 24 S. uberis isolates from three dairy farms in Germany, affected by different courses of infection was conducted. While there were sporadic mild infections in farm A and B, a large number of infections were observed within a very short period of time in farm C. The comparison of virulence genes, antimicrobial resistance genes and prophage regions revealed no features that might be responsible for this severe course. However, almost all isolates from farm C showed the same, novel MLST profile (ST1373), thus a clonal outbreak cannot be excluded, whereby the actual reason for the particular virulence remains unknown. This study demonstrates the importance of extensive metagenomic studies, including the host genomes and the environment, to gain further evidence on the pathogenicity of S. uberis.


Subject(s)
Mastitis, Bovine , Streptococcal Infections , Animals , Cattle , Female , Mastitis, Bovine/epidemiology , Mastitis, Bovine/microbiology , Multilocus Sequence Typing , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Streptococcus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...