Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 82(6): 1255-1262, 2014 Jun 18.
Article in English | MEDLINE | ID: mdl-24945770

ABSTRACT

Acute gene inactivation using short hairpin RNA (shRNA, knockdown) in developing brain is a powerful technique to study genetic function; however, discrepancies between knockdown and knockout murine phenotypes have left unanswered questions. For example, doublecortin (Dcx) knockdown but not knockout shows a neocortical neuronal migration phenotype. Here we report that in utero electroporation of shRNA, but not siRNA or miRNA, to Dcx demonstrates a migration phenotype in Dcx knockouts akin to the effect in wild-type mice, suggesting shRNA-mediated off-target toxicity. This effect was not limited to Dcx, as it was observed in Dclk1 knockouts, as well as with a fraction of scrambled shRNAs, suggesting a sequence-dependent but not sequence-specific effect. Profiling RNAs from electroporated cells showed a defect in endogenous let7 miRNA levels, and disruption of let7 or Dicer recapitulated the migration defect. The results suggest that shRNA-mediated knockdown can produce untoward migration effects by altering endogenous miRNA pathways.


Subject(s)
Cell Movement/genetics , Gene Knockdown Techniques/methods , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Microtubule-Associated Proteins/genetics , Neurons/physiology , Neuropeptides/genetics , RNA, Small Interfering/genetics , Animals , Doublecortin Domain Proteins , Doublecortin Protein , Gene Knockout Techniques/methods , Humans , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Neurons/cytology , Phenotype
2.
Science ; 343(6170): 506-511, 2014 Jan 31.
Article in English | MEDLINE | ID: mdl-24482476

ABSTRACT

Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease.


Subject(s)
Exome/genetics , Genetic Association Studies , Motor Neuron Disease/genetics , Neurons/metabolism , Pyramidal Tracts/metabolism , Spastic Paraplegia, Hereditary/genetics , Animals , Axons/physiology , Biological Transport/genetics , Cohort Studies , Gene Regulatory Networks , Humans , Mutation , Nucleotides/genetics , Nucleotides/metabolism , Sequence Analysis, DNA , Synapses/physiology , Transcriptome , Zebrafish
3.
Am J Hum Genet ; 94(1): 80-6, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24360807

ABSTRACT

Joubert syndrome and related disorders (JSRDs) are genetically heterogeneous and characterized by a distinctive mid-hindbrain malformation. Causative mutations lead to primary cilia dysfunction, which often results in variable involvement of other organs such as the liver, retina, and kidney. We identified predicted null mutations in CSPP1 in six individuals affected by classical JSRDs. CSPP1 encodes a protein localized to centrosomes and spindle poles, as well as to the primary cilium. Despite the known interaction between CSPP1 and nephronophthisis-associated proteins, none of the affected individuals in our cohort presented with kidney disease, and further, screening of a large cohort of individuals with nephronophthisis demonstrated no mutations. CSPP1 is broadly expressed in neural tissue, and its encoded protein localizes to the primary cilium in an in vitro model of human neurogenesis. Here, we show abrogated protein levels and ciliogenesis in affected fibroblasts. Our data thus suggest that CSPP1 is involved in neural-specific functions of primary cilia.


Subject(s)
Cell Cycle Proteins/genetics , Cerebellar Diseases/genetics , Eye Abnormalities/genetics , Gene Deletion , Kidney Diseases, Cystic/genetics , Microtubule-Associated Proteins/genetics , Retina/abnormalities , Abnormalities, Multiple , Brain/pathology , Cell Cycle Proteins/metabolism , Centrosome/metabolism , Cerebellum/abnormalities , Cilia/genetics , Cilia/pathology , Cohort Studies , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Image Processing, Computer-Assisted , Microtubule-Associated Proteins/metabolism , Polymorphism, Single Nucleotide
4.
Cell ; 154(3): 505-17, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23911318

ABSTRACT

Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acid synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH) due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a potentially treatable early-onset neurodegenerative disease.


Subject(s)
AMP Deaminase/metabolism , Olivopontocerebellar Atrophies/metabolism , Purines/biosynthesis , AMP Deaminase/chemistry , AMP Deaminase/genetics , Animals , Brain Stem/pathology , Cerebellum/pathology , Child , Female , Guanosine Triphosphate/metabolism , Humans , Male , Mice , Mice, Knockout , Mutation , Neural Stem Cells/metabolism , Olivopontocerebellar Atrophies/genetics , Olivopontocerebellar Atrophies/pathology , Protein Biosynthesis , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism
5.
J Neurosci ; 33(14): 5980-91, 2013 Apr 03.
Article in English | MEDLINE | ID: mdl-23554479

ABSTRACT

There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/therapy , Oligodendroglia/physiology , Signal Transduction/physiology , eIF-2 Kinase/metabolism , Age Factors , Animals , Animals, Newborn , Brain/pathology , Bromodeoxyuridine/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Female , Gene Expression Regulation/drug effects , Immunosuppressive Agents/pharmacology , In Situ Nick-End Labeling , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Myelin Basic Protein/metabolism , Myelin Proteolipid Protein/genetics , Neutrophil Infiltration/drug effects , Neutrophil Infiltration/genetics , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Oligodendroglia/ultrastructure , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , RNA, Messenger/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction/drug effects , Stem Cells/drug effects , Stem Cells/physiology , T-Lymphocytes/drug effects , T-Lymphocytes/physiology , Tacrolimus/analogs & derivatives , Tacrolimus/pharmacology , Time Factors , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , eIF-2 Kinase/genetics
6.
Sci Transl Med ; 4(138): 138ra78, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22700954

ABSTRACT

The translation of "next-generation" sequencing directly to the clinic is still being assessed but has the potential for genetic diseases to reduce costs, advance accuracy, and point to unsuspected yet treatable conditions. To study its capability in the clinic, we performed whole-exome sequencing in 118 probands with a diagnosis of a pediatric-onset neurodevelopmental disease in which most known causes had been excluded. Twenty-two genes not previously identified as disease-causing were identified in this study (19% of cohort), further establishing exome sequencing as a useful tool for gene discovery. New genes identified included EXOC8 in Joubert syndrome and GFM2 in a patient with microcephaly, simplified gyral pattern, and insulin-dependent diabetes. Exome sequencing uncovered 10 probands (8% of cohort) with mutations in genes known to cause a disease different from the initial diagnosis. Upon further medical evaluation, these mutations were found to account for each proband's disease, leading to a change in diagnosis, some of which led to changes in patient management. Our data provide proof of principle that genomic strategies are useful in clarifying diagnosis in a proportion of patients with neurodevelopmental disorders.


Subject(s)
Exome/genetics , Female , Humans , Male , Mutation , Pedigree , Sequence Analysis, DNA , Vesicular Transport Proteins/genetics
7.
J Neurosci ; 30(47): 16053-64, 2010 Nov 24.
Article in English | MEDLINE | ID: mdl-21106844

ABSTRACT

Monoaminergic neurons [serotonergic (5-HT) and dopaminergic (mdDA)] in the brainstem project axons along the anterior-posterior axis. Despite their important physiological functions and implication in disease, the molecular mechanisms that dictate the formation of these projections along the anterior-posterior axis remain unknown. Here we reveal a novel requirement for Wnt/planar cell polarity signaling in the anterior-posterior organization of the monoaminergic system. We find that 5-HT and mdDA axons express the core planar cell polarity components Frizzled3, Celsr3, and Vangl2. In addition, monoaminergic projections show anterior-posterior guidance defects in Frizzled3, Celsr3, and Vangl2 mutant mice. The only known ligands for planar cell polarity signaling are Wnt proteins. In culture, Wnt5a attracts 5-HT but repels mdDA axons, and Wnt7b attracts mdDA axons. However, mdDA axons from Frizzled3 mutant mice are unresponsive to Wnt5a and Wnt7b. Both Wnts are expressed in gradients along the anterior-posterior axis, consistent with their role as directional cues. Finally, Wnt5a mutants show transient anterior-posterior guidance defects in mdDA projections. Furthermore, we observe during development that the cell bodies of migrating descending 5-HT neurons eventually reorient along the direction of their axons. In Frizzled3 mutants, many 5-HT and mdDA neuron cell bodies are oriented abnormally along the direction of their aberrant axon projections. Overall, our data suggest that Wnt/planar cell polarity signaling may be a global anterior-posterior guidance mechanism that controls axonal and cellular organization beyond the spinal cord.


Subject(s)
Brain Stem/physiology , Cell Polarity/physiology , Dopamine/physiology , Proto-Oncogene Proteins/physiology , Serotonin/physiology , Signal Transduction/physiology , Wnt Proteins/physiology , Animals , Axons , Brain Stem/cytology , Cues , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Neural Pathways/cytology , Neural Pathways/physiology , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Signal Transduction/genetics , Wnt Proteins/deficiency , Wnt Proteins/genetics , Wnt-5a Protein
8.
J Neurosci ; 28(13): 3456-67, 2008 Mar 26.
Article in English | MEDLINE | ID: mdl-18367611

ABSTRACT

Wnt proteins are conserved axon guidance cues that control growth cone navigation. However, the intracellular signaling mechanisms that mediate growth cone turning in response to Wnts are unknown. We previously showed that Wnt-Frizzled signaling directs spinal cord commissural axons to turn anteriorly after midline crossing through an attractive mechanism. Here we show that atypical protein kinase C (aPKC), is required for Wnt-mediated attraction of commissural axons and proper anterior-posterior (A-P) pathfinding. A PKCzeta pseudosubstrate, a specific blocker of aPKC activity, and expression of a kinase-defective PKCzeta mutant in commissural neurons resulted in A-P randomization in "open-book" explants. Upstream of PKCzeta, heterotrimeric G-proteins and phosphatidylinositol-3-kinases (PI3Ks), are also required for A-P guidance, because pertussis toxin, wortmannin, and expression of a p110gamma kinase-defective construct all resulted in A-P randomization. Overexpression of p110gamma, the catalytic subunit of PI3Kgamma, caused precocious anterior turning of commissural axons before midline crossing in open-book explants and caused dissociated precrossing commissural axons, which are normally insensitive to Wnt attraction, to turn toward Wnt4-expressing cells. Therefore, we propose that atypical PKC signaling is required for Wnt-mediated A-P axon guidance and that PI3K can act as a switch to activate Wnt responsiveness during midline crossing.


Subject(s)
Axons/physiology , Neurons/cytology , Phosphatidylinositol 3-Kinases/physiology , Signal Transduction/physiology , Spinal Cord/embryology , Wnt Proteins/metabolism , Animals , Axons/drug effects , COS Cells , Chlorocebus aethiops , Electroporation/methods , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Developmental/physiology , Green Fluorescent Proteins/metabolism , Mice , Mutation/physiology , Organ Culture Techniques , Protein Kinase C/genetics , Spinal Cord/cytology , Transfection , Wnt Proteins/pharmacology , Wnt4 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...