Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Res Sq ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496447

ABSTRACT

Two APOBEC (apolipoprotein-B mRNA editing enzyme catalytic polypeptide-like) DNA cytosine deaminase enzymes (APOBEC3A and APOBEC3B) generate somatic mutations in cancer, driving tumour development and drug resistance. Here we used single cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires Grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell cycle stage associated with APOBEC-mediated mutagenesis. In contrast, we show that in squamous cell carcinoma tissues, there is expansion of GRHL3 expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings indicate a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.

2.
Br J Oral Maxillofac Surg ; 62(2): 118-127, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38296711

ABSTRACT

Proliferative verrucous leukoplakia (PVL) is a rare oral potentially malignant disorder characterised by multifocal origin and unpredictable long-term evolution to oral squamous cell carcinoma (OSCC) or oral verrucous carcinoma (OVC). Currently no predictive biomarkers are in clinical use. We aimed to explore the genomic profile of PVL. A total of 685 cases in 26 studies were included in this review. Genomic data were presented in 15% of studies and biomarker analysis was reported in 85% of studies. At first clinical presentation, PVL is characterised by a high loss of heterozygosity (LOH), similar to OSCC, and low copy number alterations (CNA). As these progress, more CNAs and mutations in CDKN2A and alterations to ELAVL1 expression are noted, but no TP53 mutations are identified. There is significantly lower LOH at 17p in early PVL compared with OSCC (p = 0.037). Deletions in chromosomal loci 17q12, 5q31.1 and amplifications in 7q11.2, 7q22 are shared between early lesions and OVC. PVL shows CNAs at 11q31. WNT signalling pathway genes (SUZ12, CTTN and FOLR3) are enriched in CN-altered regions. PVL stroma shows significantly lower α-SMA and higher CD34 expression than OVC and OSCC. The exact genomic landscape is currently unclear, and further studies are necessary to unravel this mystery.


Subject(s)
Carcinoma, Squamous Cell , Carcinoma, Verrucous , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , Leukoplakia, Oral/genetics , Squamous Cell Carcinoma of Head and Neck , Carcinoma, Verrucous/genetics
3.
J Neurol Surg B Skull Base ; 84(4): 307-319, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37405239

ABSTRACT

Objectives Sinonasal mucosal melanoma (SNMM) is an extremely rare and challenging sinonasal malignancy with a poor prognosis. Standard treatment involves complete surgical resection, but the role of adjuvant therapy remains unclear. Crucially, our understanding of its clinical presentation, course, and optimal treatment remains limited, and few advancements in improving its management have been made in the recent past. Methods We conducted an international multicenter retrospective analysis of 505 SNMM cases from 11 institutions across the United States, United Kingdom, Ireland, and continental Europe. Data on clinical presentation, diagnosis, treatment, and clinical outcomes were assessed. Results One-, three-, and five-year recurrence-free and overall survival were 61.4, 30.6, and 22.0%, and 77.6, 49.2, and 38.3%, respectively. Compared with disease confined to the nasal cavity, sinus involvement confers significantly worse survival; based on this, further stratifying the T3 stage was highly prognostic ( p < 0.001) with implications for a potential modification to the current TNM staging system. There was a statistically significant survival benefit for patients who received adjuvant radiotherapy, compared with those who underwent surgery alone (hazard ratio [HR] = 0.74, 95% confidence interval [CI]: 0.57-0.96, p = 0.021). Immune checkpoint blockade for the management of recurrent or persistent disease, with or without distant metastasis, conferred longer survival (HR = 0.50, 95% CI: 0.25-1.00, p = 0.036). Conclusions We present findings from the largest cohort of SNMM reported to date. We demonstrate the potential utility of further stratifying the T3 stage by sinus involvement and present promising data on the benefit of immune checkpoint inhibitors for recurrent, persistent, or metastatic disease with implications for future clinical trials in this field.

4.
Pharmacol Res ; 188: 106671, 2023 02.
Article in English | MEDLINE | ID: mdl-36681368

ABSTRACT

Cancer drug development is hindered by high clinical attrition rates, which are blamed on weak predictive power by preclinical models and limited replicability of preclinical findings. However, the technically feasible level of replicability remains unknown. To fill this gap, we conducted an analysis of data from the NCI60 cancer cell line screen (2.8 million compound/cell line experiments), which is to our knowledge the largest depository of experiments that have been repeatedly performed over decades. The findings revealed profound intra-laboratory data variability, although all experiments were executed following highly standardised protocols that avoid all known confounders of data quality. All compound/ cell line combinations with > 100 independent biological replicates displayed maximum GI50 (50% growth inhibition) fold changes (highest/ lowest GI50) > 5% and 70.5% displayed maximum fold changes > 1000. The highest maximum fold change was 3.16 × 1010 (lowest GI50: 7.93 ×10-10 µM, highest GI50: 25.0 µM). FDA-approved drugs and experimental agents displayed similar variation. Variability remained high after outlier removal, when only considering experiments that tested drugs at the same concentration range, and when only considering NCI60-provided quality-controlled data. In conclusion, high variability is an intrinsic feature of anti-cancer drug testing, even among standardised experiments in a world-leading research environment. Awareness of this inherent variability will support realistic data interpretation and inspire research to improve data robustness. Further research will have to show whether the inclusion of a wider variety of model systems, such as animal and/ or patient-derived models, may improve data robustness.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Antineoplastic Agents/pharmacology , Cell Culture Techniques
5.
Nat Commun ; 13(1): 5818, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207323

ABSTRACT

Human papillomavirus (HPV)-associated cervical cancer is a leading cause of cancer deaths in women. Here we present an integrated multi-omic analysis of 643 cervical squamous cell carcinomas (CSCC, the most common histological variant of cervical cancer), representing patient populations from the USA, Europe and Sub-Saharan Africa and identify two CSCC subtypes (C1 and C2) with differing prognosis. C1 and C2 tumours can be driven by either of the two most common HPV types in cervical cancer (16 and 18) and while HPV16 and HPV18 are overrepresented among C1 and C2 tumours respectively, the prognostic difference between groups is not due to HPV type. C2 tumours, which comprise approximately 20% of CSCCs across these cohorts, display distinct genomic alterations, including loss or mutation of the STK11 tumour suppressor gene, increased expression of several immune checkpoint genes and differences in the tumour immune microenvironment that may explain the shorter survival associated with this group. In conclusion, we identify two therapy-relevant CSCC subtypes that share the same defining characteristics across three geographically diverse cohorts.


Subject(s)
Carcinoma, Squamous Cell , Papillomavirus Infections , Uterine Cervical Neoplasms , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Female , Human papillomavirus 16/genetics , Humans , Papillomaviridae/genetics , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Papillomavirus Infections/pathology , Prognosis , Tumor Microenvironment , Uterine Cervical Neoplasms/pathology
7.
Nat Rev Clin Oncol ; 19(5): 306-327, 2022 05.
Article in English | MEDLINE | ID: mdl-35105976

ABSTRACT

Human papillomavirus (HPV)-positive (HPV+) oropharyngeal squamous cell carcinoma (OPSCC) has one of the most rapidly increasing incidences of any cancer in high-income countries. The most recent (8th) edition of the UICC/AJCC staging system separates HPV+ OPSCC from its HPV-negative (HPV-) counterpart to account for the improved prognosis seen in the former. Indeed, owing to its improved prognosis and greater prevalence in younger individuals, numerous ongoing trials are examining the potential for treatment de-intensification as a means to improve quality of life while maintaining acceptable survival outcomes. In addition, owing to the distinct biology of HPV+ OPSCCs, targeted therapies and immunotherapies have become an area of particular interest. Importantly, OPSCC is often detected at an advanced stage owing to a lack of symptoms in the early stages; therefore, a need exists to identify and validate possible diagnostic biomarkers to aid in earlier detection. In this Review, we provide a summary of the epidemiology, molecular biology and clinical management of HPV+ OPSCC in an effort to highlight important advances in the field. Ultimately, a need exists for improved understanding of the molecular basis and clinical course of this disease to guide efforts towards early detection and precision care, and to improve patient outcomes.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Oropharyngeal Neoplasms , Papillomavirus Infections , Carcinoma, Squamous Cell/epidemiology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/therapy , Humans , Molecular Epidemiology , Oropharyngeal Neoplasms/epidemiology , Oropharyngeal Neoplasms/genetics , Oropharyngeal Neoplasms/therapy , Papillomavirus Infections/complications , Papillomavirus Infections/epidemiology , Papillomavirus Infections/genetics , Quality of Life , Squamous Cell Carcinoma of Head and Neck
8.
Oncogene ; 41(15): 2139-2151, 2022 04.
Article in English | MEDLINE | ID: mdl-35194151

ABSTRACT

Limited understanding of bladder cancer aetiopathology hampers progress in reducing incidence. Mutational signatures show the anti-viral apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC) enzymes are responsible for the preponderance of mutations in bladder tumour genomes, but no causative viral agent has been identified. BK polyomavirus (BKPyV) is a common childhood infection that remains latent in the adult kidney, where reactivation leads to viruria. This study provides missing mechanistic evidence linking reactivated BKPyV-infection to bladder cancer risk. We used a mitotically-quiescent, functionally-differentiated model of normal human urothelium to examine BKPyV-infection. BKPyV-infection led to significantly elevated APOBEC3A and APOBEC3B protein, increased deaminase activity and greater numbers of apurinic/apyrimidinic sites in the host urothelial genome. BKPyV Large T antigen (LT-Ag) stimulated re-entry from G0 into the cell cycle through inhibition of retinoblastoma protein and activation of EZH2, E2F1 and FOXM1, with cells arresting in G2. The single-stranded DNA displacement loops formed in urothelial cells during BKPyV-infection interacted with LT-Ag to provide a substrate for APOBEC3-activity. Addition of interferon gamma (IFNγ) to infected urothelium suppressed expression of the viral genome. These results support reactivated BKPyV infections in adults as a risk factor for bladder cancer in immune-insufficient populations.


Subject(s)
BK Virus , Polyomavirus Infections , Urinary Bladder Neoplasms , APOBEC Deaminases/genetics , Adult , Antigens, Viral, Tumor , BK Virus/genetics , Child , Cytidine Deaminase/genetics , Humans , Minor Histocompatibility Antigens , Polyomavirus Infections/complications , Polyomavirus Infections/genetics , Proteins , Urinary Bladder Neoplasms/genetics , Urothelium/pathology
9.
Eur J Cancer ; 162: 221-236, 2022 02.
Article in English | MEDLINE | ID: mdl-34980502

ABSTRACT

INTRODUCTION: Olfactory neuroblastoma (ONB) is a rare cancer of the sinonasal region. We provide a comprehensive analysis of this malignancy with molecular and clinical trial data on a subset of our cohort to report on the potential efficacy of somatostatin receptor 2 (SSTR2)-targeting imaging and therapy. METHODS: We conducted a retrospective analysis of 404 primary, locally recurrent, and metastatic olfactory neuroblastoma (ONB) patients from 12 institutions in the United States of America, United Kingdom and Europe. Clinicopathological characteristics and treatment approach were evaluated. SSTR2 expression, SSTR2-targeted imaging and the efficacy of peptide receptor radionuclide therapy [PRRT](177Lu-DOTATATE) were reported in a subset of our cohort (LUTHREE trial; NCT03454763). RESULTS: Dural infiltration at presentation was a significant predictor of overall survival (OS) and disease-free survival (DFS) in primary cases (n = 278). Kadish-Morita staging and Dulguerov T-stage both had limitations regarding their prognostic value. Multivariable survival analysis demonstrated improved outcomes with lower stage and receipt of adjuvant radiotherapy. Prophylactic neck irradiation significantly reduces the rate of nodal recurrence. 82.4% of the cohort were positive for SSTR2; treatment of three metastatic cases with SSTR2-targeted peptide-radionuclide receptor therapy (PRRT) in the LUTHREE trial was well-tolerated and resulted in stable disease (SD). CONCLUSIONS: This study presents pertinent clinical data from the largest dataset, to date, on ONB. We identify key prognostic markers and integrate these into an updated staging system, highlight the importance of adjuvant radiotherapy across all disease stages, the utility of prophylactic neck irradiation and the potential efficacy of targeting SSTR2 to manage disease.


Subject(s)
Esthesioneuroblastoma, Olfactory , Neuroblastoma , Nose Neoplasms , Esthesioneuroblastoma, Olfactory/pathology , Esthesioneuroblastoma, Olfactory/therapy , Humans , Nasal Cavity/metabolism , Nasal Cavity/pathology , Neuroblastoma/pathology , Nose Neoplasms/radiotherapy , Positron-Emission Tomography , Radioisotopes , Radionuclide Imaging , Receptors, Somatostatin/metabolism , Retrospective Studies
11.
J Immunother Cancer ; 9(7)2021 07.
Article in English | MEDLINE | ID: mdl-34281986

ABSTRACT

BACKGROUND: Therapies based on targeting immune checkpoints have revolutionized the treatment of metastatic melanoma in recent years. Still, biomarkers predicting long-term therapy responses are lacking. METHODS: A novel approach of reference-free deconvolution of large-scale DNA methylation data enabled us to develop a machine learning classifier based on CpG sites, specific for latent methylation components (LMC), that allowed for patient allocation to prognostic clusters. DNA methylation data were processed using reference-free analyses (MeDeCom) and reference-based computational tumor deconvolution (MethylCIBERSORT, LUMP). RESULTS: We provide evidence that DNA methylation signatures of tumor tissue from cutaneous metastases are predictive for therapy response to immune checkpoint inhibition in patients with stage IV metastatic melanoma. CONCLUSIONS: These results demonstrate that LMC-based segregation of large-scale DNA methylation data is a promising tool for classifier development and treatment response estimation in cancer patients under targeted immunotherapy.


Subject(s)
DNA Methylation/genetics , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Melanoma/drug therapy , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Male , Melanoma/genetics
12.
Cancer Discov ; 11(10): 2456-2473, 2021 10.
Article in English | MEDLINE | ID: mdl-33947663

ABSTRACT

APOBEC3 enzymes are cytosine deaminases implicated in cancer. Precisely when APOBEC3 expression is induced during cancer development remains to be defined. Here we show that specific APOBEC3 genes are upregulated in breast ductal carcinoma in situ, and in preinvasive lung cancer lesions coincident with cellular proliferation. We observe evidence of APOBEC3-mediated subclonal mutagenesis propagated from TRACERx preinvasive to invasive non-small cell lung cancer (NSCLC) lesions. We find that APOBEC3B exacerbates DNA replication stress and chromosomal instability through incomplete replication of genomic DNA, manifested by accumulation of mitotic ultrafine bridges and 53BP1 nuclear bodies in the G1 phase of the cell cycle. Analysis of TRACERx NSCLC clinical samples and mouse lung cancer models revealed APOBEC3B expression driving replication stress and chromosome missegregation. We propose that APOBEC3 is functionally implicated in the onset of chromosomal instability and somatic mutational heterogeneity in preinvasive disease, providing fuel for selection early in cancer evolution. SIGNIFICANCE: This study reveals the dynamics and drivers of APOBEC3 gene expression in preinvasive disease and the exacerbation of cellular diversity by APOBEC3B through DNA replication stress to promote chromosomal instability early in cancer evolution.This article is highlighted in the In This Issue feature, p. 2355.


Subject(s)
APOBEC Deaminases/genetics , Breast Neoplasms/genetics , Carcinoma, Ductal/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Animals , Cell Line, Tumor , Chromosomal Instability , DNA Replication , Female , Humans , Mice
13.
Nat Commun ; 12(1): 117, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33402692

ABSTRACT

Nasopharyngeal cancer (NPC), endemic in Southeast Asia, lacks effective diagnostic and therapeutic strategies. Even in high-income countries the 5-year survival rate for stage IV NPC is less than 40%. Here we report high somatostatin receptor 2 (SSTR2) expression in multiple clinical cohorts comprising 402 primary, locally recurrent and metastatic NPCs. We show that SSTR2 expression is induced by the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) via the NF-κB pathway. Using cell-based and preclinical rodent models, we demonstrate the therapeutic potential of SSTR2 targeting using a cytotoxic drug conjugate, PEN-221, which is found to be superior to FDA-approved SSTR2-binding cytostatic agents. Furthermore, we reveal significant correlation of SSTR expression with increased rates of survival and report in vivo uptake of the SSTR2-binding 68Ga-DOTA-peptide radioconjugate in PET-CT scanning in a clinical trial of NPC patients (NCT03670342). These findings reveal a key role in EBV-associated NPC for SSTR2 in infection, imaging, targeted therapy and survival.


Subject(s)
Epstein-Barr Virus Infections , Gene Expression Regulation, Neoplastic , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Neoplasm Recurrence, Local , Receptors, Somatostatin , Viral Matrix Proteins , Animals , Female , Humans , Male , Mice , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Epstein-Barr Virus Infections/drug therapy , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/mortality , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/growth & development , Herpesvirus 4, Human/pathogenicity , Host-Pathogen Interactions/genetics , Lymphatic Metastasis , Mice, Nude , Molecular Targeted Therapy , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/virology , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/virology , NF-kappa B/genetics , NF-kappa B/metabolism , Octreotide/pharmacology , Positron Emission Tomography Computed Tomography , Receptors, Somatostatin/antagonists & inhibitors , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism , Signal Transduction , Survival Analysis , Viral Matrix Proteins/antagonists & inhibitors , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Xenograft Model Antitumor Assays
14.
Commun Biol ; 3(1): 324, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32581304

ABSTRACT

The nucleoside analogue nelarabine, the prodrug of arabinosylguanine (AraG), is effective against T-cell acute lymphoblastic leukaemia (T-ALL) but not against B-cell ALL (B-ALL). The underlying mechanisms have remained elusive. Here, data from pharmacogenomics studies and a panel of ALL cell lines reveal an inverse correlation between nelarabine sensitivity and the expression of SAMHD1, which can hydrolyse and inactivate triphosphorylated nucleoside analogues. Lower SAMHD1 abundance is detected in T-ALL than in B-ALL in cell lines and patient-derived leukaemic blasts. Mechanistically, T-ALL cells display increased SAMHD1 promoter methylation without increased global DNA methylation. SAMHD1 depletion sensitises B-ALL cells to AraG, while ectopic SAMHD1 expression in SAMHD1-null T-ALL cells induces AraG resistance. SAMHD1 has a larger impact on nelarabine/AraG than on cytarabine in ALL cells. Opposite effects are observed in acute myeloid leukaemia cells, indicating entity-specific differences. In conclusion, SAMHD1 promoter methylation and, in turn, SAMHD1 expression levels determine ALL cell response to nelarabine.


Subject(s)
Arabinonucleosides/pharmacology , Drug Resistance, Neoplasm/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , SAM Domain and HD Domain-Containing Protein 1/genetics , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Cell Line, Tumor , DNA Methylation , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Leukemic , Humans , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Promoter Regions, Genetic , SAM Domain and HD Domain-Containing Protein 1/metabolism
15.
Cancer Res ; 80(9): 1846-1860, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32122909

ABSTRACT

Determining mechanisms of resistance to αPD-1/PD-L1 immune-checkpoint immunotherapy is key to developing new treatment strategies. Cancer-associated fibroblasts (CAF) have many tumor-promoting functions and promote immune evasion through multiple mechanisms, but as yet, no CAF-specific inhibitors are clinically available. Here we generated CAF-rich murine tumor models (TC1, MC38, and 4T1) to investigate how CAFs influence the immune microenvironment and affect response to different immunotherapy modalities [anticancer vaccination, TC1 (HPV E7 DNA vaccine), αPD-1, and MC38] and found that CAFs broadly suppressed response by specifically excluding CD8+ T cells from tumors (not CD4+ T cells or macrophages); CD8+ T-cell exclusion was similarly present in CAF-rich human tumors. RNA sequencing of CD8+ T cells from CAF-rich murine tumors and immunochemistry analysis of human tumors identified significant upregulation of CTLA-4 in the absence of other exhaustion markers; inhibiting CTLA-4 with a nondepleting antibody overcame the CD8+ T-cell exclusion effect without affecting Tregs. We then examined the potential for CAF targeting, focusing on the ROS-producing enzyme NOX4, which is upregulated by CAF in many human cancers, and compared this with TGFß1 inhibition, a key regulator of the CAF phenotype. siRNA knockdown or pharmacologic inhibition [GKT137831 (Setanaxib)] of NOX4 "normalized" CAF to a quiescent phenotype and promoted intratumoral CD8+ T-cell infiltration, overcoming the exclusion effect; TGFß1 inhibition could prevent, but not reverse, CAF differentiation. Finally, NOX4 inhibition restored immunotherapy response in CAF-rich tumors. These findings demonstrate that CAF-mediated immunotherapy resistance can be effectively overcome through NOX4 inhibition and could improve outcome in a broad range of cancers. SIGNIFICANCE: NOX4 is critical for maintaining the immune-suppressive CAF phenotype in tumors. Pharmacologic inhibition of NOX4 potentiates immunotherapy by overcoming CAF-mediated CD8+ T-cell exclusion. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/9/1846/F1.large.jpg.See related commentary by Hayward, p. 1799.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Animals , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Humans , Immunotherapy , Mice , NADPH Oxidase 4 , Reactive Oxygen Species
18.
J Mol Endocrinol ; 62(4): R269-R287, 2019 05.
Article in English | MEDLINE | ID: mdl-30870810

ABSTRACT

The interaction between human papillomaviruses (HPV) and the apolipoprotein-B mRNA-editing catalytic polypeptide-like (APOBEC)3 (A3) genes has garnered increasing attention in recent years, with considerable efforts focused on understanding their apparent roles in both viral editing and in HPV-driven carcinogenesis. Here, we review these developments and highlight several outstanding questions in the field. We consider whether editing of the virus and mutagenesis of the host are linked or whether both are essentially separate events, coincidentally mediated by a common or distinct A3 enzymes. We discuss the viral mechanisms and cellular signalling pathways implicated in A3 induction in virally infected cells and examine which of the A3 enzymes might play the major role in HPV-associated carcinogenesis and in the development of therapeutic resistance. We consider the parallels between A3 induction in HPV-infected cells and what might be causing aberrant A3 activity in HPV-independent cancers such as those arising in the bladder, lung and breast. Finally, we discuss the implications of ongoing A3 activity in tumours under treatment and the therapeutic opportunities that this may present.


Subject(s)
Cytidine Deaminase/genetics , Disease Susceptibility , Host-Pathogen Interactions , Neoplasms/etiology , Papillomaviridae/physiology , Papillomavirus Infections/complications , Papillomavirus Infections/virology , APOBEC Deaminases , Cell Transformation, Viral , Cytidine Deaminase/metabolism , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Models, Biological , Mutation , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction
19.
Cancer Cell ; 35(3): 504-518.e7, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30827889

ABSTRACT

Ionizing radiation (IR) and chemotherapy are standard-of-care treatments for glioblastoma (GBM) patients and both result in DNA damage, however, the clinical efficacy is limited due to therapeutic resistance. We identified a mechanism of such resistance mediated by phosphorylation of PTEN on tyrosine 240 (pY240-PTEN) by FGFR2. pY240-PTEN is rapidly elevated and bound to chromatin through interaction with Ki-67 in response to IR treatment and facilitates the recruitment of RAD51 to promote DNA repair. Blocking Y240 phosphorylation confers radiation sensitivity to tumors and extends survival in GBM preclinical models. Y240F-Pten knockin mice showed radiation sensitivity. These results suggest that FGFR-mediated pY240-PTEN is a key mechanism of radiation resistance and is an actionable target for improving radiotherapy efficacy.


Subject(s)
Brain Neoplasms/therapy , Cell Nucleus/metabolism , Glioma/therapy , PTEN Phosphohydrolase/metabolism , Pyrimidines/administration & dosage , Radiation Tolerance/drug effects , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Animals , Brain Neoplasms/metabolism , DNA Repair/drug effects , Female , Glioma/metabolism , Humans , Male , Mice , Phosphorylation/drug effects , Pyrimidines/pharmacology , Rad51 Recombinase/metabolism , Tyrosine/metabolism , Xenograft Model Antitumor Assays
20.
Nat Commun ; 9(1): 4642, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30389940

ABSTRACT

The original version of this Article contained an error in Figure 4. In panel a, the colour code for hot and cold clusters was inadvertently inverted. In the correct version of panel a, the hot clusters are blue and the cold clusters are yellow. This error has now been corrected in both the PDF and HTML versions of the Article.

SELECTION OF CITATIONS
SEARCH DETAIL
...