Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 158(21)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37260010

ABSTRACT

The mixed surfactant system of tetradecyldimethylamine oxide (TDMAO) and lithium perfluorooctanoate (LiPFO) is known to spontaneously self-assemble into well-defined small unilamellar vesicles. For a quantitative analysis of small-angle x-ray scattering on this model system, we complemented the measurements with densitometry, conductimetry, and contrast-variation small-angle neutron scattering. The analysis points to two main findings: first, the vesicles formed to contain a much higher mole fraction (0.61-0.64) of TDMAO than the bulk sample (0.43) and predicted by Regular Solution Theory (RST, 0.46). In consequence, the unimer concentration of LiPFO is more than 5 times higher than predicted by RST. Second, the vesicle bilayer is asymmetric with a higher fraction of LiPFO on the outside. These findings on a model system should be of broader relevance for the understanding of similar mixed surfactant vesicle systems and thereby also be of importance for their use in a number of applications.

2.
J Appl Crystallogr ; 55(Pt 6): 1592-1602, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36570657

ABSTRACT

Small-angle scattering (SAS) experiments are a powerful method for studying self-assembly phenomena in nanoscopic materials because of the sensitivity of the technique to structures formed by interactions on the nanoscale. Numerous out-of-the-box options exist for analysing structures measured by SAS but many of these are underpinned by assumptions about the underlying interactions that are not always relevant for a given system. Here, a numerical algorithm based on reverse Monte Carlo simulations is described to model the intensity observed on a SAS detector as a function of the scattering vector. The model simulates a two-dimensional detector image, accounting for magnetic scattering, instrument resolution, particle polydispersity and particle collisions, while making no further assumptions about the underlying particle interactions. By simulating a two-dimensional image that can be potentially anisotropic, the algorithm is particularly useful for studying systems driven by anisotropic interactions. The final output of the algorithm is a relative particle distribution, allowing visualization of particle structures that form over long-range length scales (i.e. several hundred nanometres), along with an orientational distribution of magnetic moments. The effectiveness of the algorithm is shown by modelling a SAS experimental data set studying finite-length chains consisting of magnetic nanoparticles, which assembled in the presence of a strong magnetic field due to dipole interactions.

3.
J Appl Crystallogr ; 54(Pt 6): 1719-1729, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34963764

ABSTRACT

Iron oxide nanoparticles find a wide variety of applications, including targeted drug delivery and hyperthermia in advanced cancer treatment methods. An important property of these particles is their maximum net magnetization, which has been repeatedly reported to be drastically lower than the bulk reference value. Previous studies have shown that planar lattice defects known as antiphase boundaries (APBs) have an important influence on the particle magnetization. The influence of APBs on the atomic spin structure of nanoparticles with the γ-Fe2O3 composition is examined via Monte Carlo simulations, explicitly considering dipole-dipole interactions between the magnetic moments that have previously only been approximated. For a single APB passing through the particle centre, a reduction in the magnetization of 3.9% (for 9 nm particles) to 7.9% (for 5 nm particles) is found in saturation fields of 1.5 T compared with a particle without this defect. Additionally, on the basis of Debye scattering equation simulations, the influence of APBs on X-ray powder diffraction patterns is shown. The Fourier transform of the APB peak profile is developed to be used in a whole powder pattern modelling approach to determine the presence of APBs and quantify them by fits to powder diffraction patterns. This is demonstrated on experimental data, where it could be shown that the number of APBs is related to the observed reduction in magnetization.

4.
Adv Mater ; 33(24): e2008683, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33960040

ABSTRACT

Self-assembly of iron oxide nanoparticles (IONPs) into 1D chains is appealing, because of their biocompatibility and higher mobility compared to 2D/3D assemblies while traversing the circulatory passages and blood vessels for in vivo biomedical applications. In this work, parameters such as size, concentration, composition, and magnetic field, responsible for chain formation of IONPs in a dispersion as opposed to spatially confining substrates, are examined. In particular, the monodisperse 27 nm IONPs synthesized by an extended LaMer mechanism are shown to form chains at 4 mT, which are lengthened with applied field reaching 270 nm at 2.2 T. The chain lengths are completely reversible in field. Using a combination of scattering methods and reverse Monte Carlo simulations the formation of chains is directly visualized. The visualization of real-space IONPs assemblies formed in dispersions presents a novel tool for biomedical researchers. This allows for rapid exploration of the behavior of IONPs in solution in a broad parameter space and unambiguous extraction of ​the parameters of the equilibrium structures. Additionally, it can be extended to study novel assemblies formed by more complex geometries of IONPs.


Subject(s)
Ferric Compounds , Magnetite Nanoparticles , Particle Size
5.
Nanoscale ; 13(14): 6965-6976, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33885498

ABSTRACT

Iron oxide nanoparticles are presently considered as main work horses for various applications including targeted drug delivery and magnetic hyperthermia. Several questions remain unsolved regarding the effect of size onto their overall magnetic behavior. One aspect is the reduction of magnetization compared to bulk samples. A detailed understanding of the underlying mechanisms of this reduction could improve the particle performance in applications. Here we use a number of complementary experimental techniques including neutron scattering and synchrotron X-ray diffraction to arrive at a consistent conclusion. We confirm the observation from previous studies of a reduced saturation magnetization and argue that this reduction is mainly associated with the presence of antiphase boundaries, which are observed directly using high-resolution transmission electron microscopy and indirectly via an anisotropic peak broadening in X-ray diffraction patterns. Additionally small-angle neutron scattering with polarized neutrons revealed a small non-magnetic surface layer, that is, however, not sufficient to explain the observed loss in magnetization alone.

6.
Soft Matter ; 16(7): 1922-1930, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31995091

ABSTRACT

The radial density profile of deuterated poly(N,n-propyl acrylamide) shell monomers within core-shell microgels has been studied by small-angle neutron scattering in order to shed light on the origin of their linear thermally-induced swelling. The poly(N-isopropyl methacrylamide) core monomers have been contrast-matched by the H2O/D2O solvent mixture, and the intensity thus provides a direct measurement of the spatial distribution of the shell monomers. Straightforward modelling shows that their structure does not correspond to the expected picture of a well-defined external shell. A multi-shell model solved by a reverse Monte Carlo approach is then applied to extract the monomer density as a function of temperature and of the core crosslinking. It is found that most shell monomers fill the core at high temperatures approaching synthesis conditions of collapsed particles, forming only a dilute corona. As the core monomers tend to swell at lower temperatures, a skeleton of insoluble shell monomers hinders swelling, inducing the progressive linear thermoresponse.

7.
Sci Rep ; 9(1): 13812, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31554839

ABSTRACT

The peculiar linear temperature-dependent swelling of core-shell microgels has been conjectured to be linked to the core-shell architecture combining materials of different transition temperatures. Here the structure of pNIPMAM-core and pNNPAM-shell microgels in water is studied as a function of temperature using small-angle neutron scattering with selective deuteration. Photon correlation spectroscopy is used to scrutinize the swelling behaviour of the colloidal particles and reveals linear swelling. Moreover, these experiments are also employed to check the influence of deuteration on swelling. Using a form-free multi-shell reverse Monte Carlo approach, the small-angle scattering data are converted into radial monomer density profiles. The comparison of 'core-only' particles consisting of identical cores to fully hydrogenated core-shell microgels, and finally to H-core/D-shell architectures unambiguously shows that core and shell monomers display gradient profiles with strong interpenetration, leading to cores embedded in shells which are bigger than their isolated 'core-only' precursor particles. This surprising result is further generalized to different core cross-linker contents, for temperature ranges encompassing both transitions. Our analysis demonstrates that the internal structure of pNIPMAM-core and pNNPAM-shell microgels is heterogeneous and strongly interpenetrated, presumably allowing only progressive core swelling at temperatures intermediate to both transition temperatures, thus promoting linear swelling behaviour.

8.
J Phys Chem B ; 123(45): 9525-9535, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31556613

ABSTRACT

Orange carotenoid proteins (OCPs) are photoswitchable macromolecules playing an important role in nonphotochemical quenching of excess energy in cyanobacterial light harvesting. Upon absorption of a blue photon (450-500 nm), OCPs undergo a structural change from the ground state OCPO to the active state OCPR, but high-resolution structures of the active state OCPR are not yet available. Here, we use small-angle scattering methods combined with simulation tools to determine low-resolution structures of the active state at low protein concentrations via two approaches: first, directly by in situ illumination of wild-type OCP achieving a turnover to the active state of >90% and second, by using the mutant OCPW288A anticipated to mimic the active state structure. Data fits assuming the shape of an ellipsoid yield three ellipsoidal radii of about 9, 29, and 51 ± 1 Å, in the case of the ground state OCPO. In the active state, however, the molecule becomes somewhat narrower with the two smaller radii being 9 and only 19 ± 3 Å, while the third dimension of the ellipsoid is significantly elongated to 85-92 ± 5 Å. Reconstitutions of the active state structure corroborate that OCPR is significantly elongated compared to the ground state OCPO and characterized by a separation of the N-terminal and C-terminal domains with unfolded N-terminal extension. By direct comparison of small-angle scattering data, we directly show that the mutant OCPW288A can be used as a structural analogue of the active state OCPR. The small-angle experiments are repeated for OCPO and the mutant OCPW288A at high protein concentrations of 50-65 mg/mL required for neutron spectroscopy investigating the molecular dynamics of OCP (see accompanying paper). The results reveal that the OCPO and OCPW288A samples for dynamics experiments are preferentially dimeric and widely resemble the structures of the ground and active states of OCP, respectively. This enables us to properly characterize the molecular dynamics of both states of OCP in the accompanying paper.


Subject(s)
Bacterial Proteins/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/radiation effects , Light , Mutation , Neutron Diffraction , Pliability , Protein Conformation , Scattering, Small Angle , Solutions/chemistry , Synechocystis/chemistry , X-Ray Diffraction
9.
Soft Matter ; 15(32): 6536-6546, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31355828

ABSTRACT

The preparation of poly(N-isopropylacrylamide) microgels via classical precipitation polymerization (batch method) and a continuous monomer feeding approach (feeding method) leads to different internal crosslinker distributions, i.e., from core-shell-like to a more homogeneous one. The internal structure and dynamics of these microgels with low and medium crosslinker concentrations are studied with dynamic light scattering and small-angle neutron scattering in a wide q-range below and above the volume phase transition temperature. The influence of the preparation method, and crosslinker and initiator concentration on the internal structure of the microgels is investigated. In contrast to the classical conception where polymer microgels possess a core-shell structure with the averaged internal polymer density distribution within the core part, a detailed view of the internal inhomogeneities of the PNIPAM microgels and the presence of internal domains even above the volume phase transition temperature, when polymer microgels are in the deswollen state, are presented. The correlation between initiator concentration and the size of internal domains that appear inside the microgel with temperature increase is demonstrated. Moreover, the influence of internal inhomogeneities on the dynamics of the batch- and feeding-microgels studied with neutron spin-echo spectroscopy is reported.

10.
Nanoscale ; 11(9): 3847-3854, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30758011

ABSTRACT

We present a platform for the encapsulation of superparamagnetic iron oxide nanocrystals (SPIONs) with a highly stable diblock copolymer shell allowing a homogeneous dispersion of the nanocrystals into a polymer matrix in the resulting nanocomposites. High polymer shell stability was achieved by crosslinking the inner polydiene shell for example in a persulfate based redox process. The advantage of this crosslinking reaction is the avoidance of heat and UV light for the initiation, making it suitable for heat or UV sensitive systems. In addition, we were able to minimize the ligand excess needed for the encapsulation and showcased a variation of molecular weight and composition as well as different ligands which lead to stable micelles. The encapsulated nanocrystals as well as the nanocomposite materials were characterized by transmission electron microscopy (TEM) and small angle scattering (SAXS and SANS).

11.
Langmuir ; 34(50): 15403-15415, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30421936

ABSTRACT

The internal structure of nanometric microgels in water has been studied as a function of temperature, cross-linker content, and level of deuteration. Small-angle neutron scattering from poly( N-isopropylmethacrylamide) (volume phase transition ≈ 44 °C) microgel particles of radius well below 100 nm in D2O has been measured. The intensities have been analyzed with a combination of polymer chain scattering and form-free radial monomer volume fraction profiles defined over spherical shells, taking polydispersity in size of the particles determined by atomic force microscopy into account. A reverse Monte Carlo optimization using a limited number of parameters was developed to obtain smoothly decaying profiles in agreement with the experimentally scattered intensities. The results are compared to the swelling curve of microgel particles in the temperature range from 15 to 55 °C obtained from photon correlation spectroscopy (PCS). In addition to hydrodynamic radii measured by PCS, our analysis provides direct information about the internal water content and gradients, the strongly varying steepness of the density profile at the particle-water interface, the total spatial extension of the particles, and the visibility of chains. The model has also been applied to a variation of the cross-linker content, N, N'-methylenebisacrylamide, from 5 to 15 mol %, providing insight on the impact of chain architecture and cross-linking on water uptake and on the definition of the polymer-water interface. The model can easily be generalized to arbitrary monomer contents and types, in particular mixtures of hydrogenated and deuterated species, paving the way to detailed studies of monomer distributions inside more complex microgels, in particular core-shell particles.

12.
J Am Chem Soc ; 140(40): 12720-12723, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30260637

ABSTRACT

While mesoporous silicas have been shown to be a compelling candidate for drug delivery and the implementation of biotechnological applications requiring protein confinement and immobilization, the understanding of protein behavior upon physical adsorption into silica pores is limited. Many indirect methods are available to assess general adsorbed protein stability, such as Fourier-transform infrared spectroscopy and activity assays. However, the limitation of these methods is that spatial protein arrangement within the pores cannot be assessed. Mesoporous silicas pose a distinct challenge to direct methods, such as transmission electron microscopy, which lacks the contrast and resolution required to adequately observe immobilized protein structure, and nuclear magnetic resonance, which is computationally intensive and requires knowledge of the primary structure a priori. Small-angle neutron scattering can surmount these limitations and observe spatial protein arrangement within pores. Hereby, we observe the stabilization of fluid-like protein arrangement, facilitated by geometry-dependent crowding effects in cylindrical pores of ordered mesoporous silica, SBA-15. Stabilization is induced from a fluid-like structure factor, which is observed for samples at maximum protein loading in SBA-15 with pore diameters of 6.4 and 8.1 nm. Application of this effect for prevention of irreversible aggregation in high concentration environments is proposed.


Subject(s)
Drug Carriers/chemistry , Neutron Diffraction , Proteins/chemistry , Scattering, Small Angle , Silicon Dioxide/chemistry , Drug Delivery Systems , Humans , Models, Molecular , Muramidase/administration & dosage , Muramidase/chemistry , Myoglobin/administration & dosage , Myoglobin/chemistry , Neutron Diffraction/methods , Porosity , Protein Aggregates , Protein Stability , Proteins/administration & dosage
13.
Langmuir ; 34(31): 9184-9194, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30010346

ABSTRACT

Self-assembled structures in aqueous solutions can be fixed by polymerization after adding hydrophobic monomers and can thereby be used as templates which allow to substantially alter the properties of these systems. In this work, we started from a self-assembled micellar system consisting of the nonionic surfactants tetradecyldimethylamine oxid and Pluronic L35 to which styrene was added as a polymerizable monomer. Interestingly, it was observed that styrene induces a transition from micelles to well-defined vesicles in a similar manner as a typical cosurfactant. The structural transition of the aggregates upon styrene addition as well as the structures formed after initiating a polymerization reaction were investigated by means of turbidity, dynamic and static light scattering, small-angle neutron scattering, and rheology measurements. Especially the scattering results confirmed the interesting effect of styrene on the mesoscopic structure and showed a structural evolution from rod-like micelles for low styrene concentrations to vesicles at intermediate styrene amounts, and then finally the formation of microemulsion droplets for high styrene content. Their polymerization of the vesicles again leads to a shape change to wormlike, polymerized aggregates, whose presence then results in rather viscous systems. In contrast, the microemulsions with higher styrene content then are templated and retain their size after polymerization, thereby leading to nanolattices.

14.
Colloids Surf B Biointerfaces ; 161: 18-26, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29035747

ABSTRACT

A rational use of superparamagnetic iron oxide nanoparticles (SPIONs) in drug delivery, diagnostics, and other biomedical applications requires deep understanding of the molecular drug adsorption/desorption mechanisms for proper design of new pharmaceutical formulations. The adsorption and desorption of the cytostatic Mitoxantrone (MTO) to lauric acid-albumin hybrid coated particles SPIONs (SEONLA-HSA) was studied by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), surface titration, release experiments and small-angle neutron and X-ray scattering. Such MTO-loaded nanoparticles have shown very promising results in in vivo animal models before, while the exact binding mechanism of the drug was unknown. SEONLA-HSA formulations have shown better stability under drug loading in comparison with uncoated nanoparticle and sustainable drug release to compare with protein solution. Adsorption of MTO to SEONLA-HSA leads to decreasing of absolute value of zeta potential and repulsive interaction among particles, which points to the location of separate molecules of MTO on the outer surface of LA-HSA shell.


Subject(s)
Albumins/chemistry , Ferric Compounds/chemistry , Lauric Acids/chemistry , Magnetite Nanoparticles/chemistry , Mitoxantrone/chemistry , Adsorption , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Coated Materials, Biocompatible/chemistry , Drug Delivery Systems/methods , Drug Liberation , Humans , Hydrogen-Ion Concentration , Mitoxantrone/administration & dosage , Mitoxantrone/pharmacokinetics , Particle Size , Scattering, Small Angle , X-Ray Diffraction
15.
Phys Rev Lett ; 119(23): 237201, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-29286691

ABSTRACT

The formation of the triangular Skyrmion lattice is found in a tetragonal polar magnet VOSe_{2}O_{5}. By magnetization and small-angle neutron scattering measurements on the single crystals, we identify a cycloidal spin state at zero field and a Néel-type Skyrmion-lattice phase under a magnetic field along the polar axis. Adjacent to this phase, another magnetic phase of an incommensurate spin texture is identified at lower temperatures, tentatively assigned to a square Skyrmion-lattice phase. These findings exemplify the versatile features of Néel-type Skyrmions in bulk materials, and provide a further opportunity to explore the physics of topological spin textures in polar magnets.

16.
Beilstein J Org Chem ; 13: 938-951, 2017.
Article in English | MEDLINE | ID: mdl-28684975

ABSTRACT

Water-soluble shape-persistent cyclodextrin (CD) polymers with amino-functionalized end groups were prepared starting from diacetylene-modified cyclodextrin monomers by a combined Glaser coupling/click chemistry approach. Structural perfection of the neutral CD polymers and inclusion complex formation with ditopic and monotopic guest molecules were proven by MALDI-TOF and UV-vis measurements. Small-angle neutron and X-ray (SANS/SAXS) scattering experiments confirm the stiffness of the polymer chains with an apparent contour length of about 130 Å. Surface modification of planar silicon wafers as well as AFM tips was realized by covalent bound formation between the terminal amino groups of the CD polymer and a reactive isothiocyanate-silane monolayer. Atomic force measurements of CD polymer decorated surfaces show enhanced supramolecular interaction energies which can be attributed to multiple inclusion complexes based on the rigidity of the polymer backbone and the regular configuration of the CD moieties. Depending on the geometrical configuration of attachment anisotropic adhesion characteristics of the polymer system can be distinguished between a peeling and a shearing mechanism.

17.
Sci Rep ; 7(1): 2802, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28584236

ABSTRACT

Understanding the assembly of nanoparticles into superlattices with well-defined morphology and structure is technologically important but challenging as it requires novel combinations of in-situ methods with suitable spatial and temporal resolution. In this study, we have followed evaporation-induced assembly during drop casting of superparamagnetic, oleate-capped γ-Fe2O3 nanospheres dispersed in toluene in real time with Grazing Incidence Small Angle X-ray Scattering (GISAXS) in combination with droplet height measurements and direct observation of the dispersion. The scattering data was evaluated with a novel method that yielded time-dependent information of the relative ratio of ordered (coherent) and disordered particles (incoherent scattering intensities), superlattice tilt angles, lattice constants, and lattice constant distributions. We find that the onset of superlattice growth in the drying drop is associated with the movement of a drying front across the surface of the droplet. We couple the rapid formation of large, highly ordered superlattices to the capillary-induced fluid flow. Further evaporation of interstitital solvent results in a slow contraction of the superlattice. The distribution of lattice parameters and tilt angles was significantly larger for superlattices prepared by fast evaporation compared to slow evaporation of the solvent.

18.
J Phys Chem B ; 121(3): 620-629, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28001074

ABSTRACT

A common feature of ionic liquids composed of cations with long aliphatic side chains is structural heterogeneities on the nanometer length scale. This so-called microphase separation arises from the clustering of aliphatic moieties. The temperature dependence of the liquid bulk structure was studied by small-angle X-ray and neutron scattering for a set of methylimidazolium ([C18C1im]+, [C22C1im]+) based ionic liquids with tris(pentafluoroethyl)trifluorophosphate ([FAP]-), bis(trifluoromethylsulfonyl)imide ([NTf2]-), and bis(nonafluorobutylsulfonyl)imide ([NNf2]-) anions. The experimental data is quantitatively analyzed using a generalized Teubner-Strey model. Discussion of the resulting periodicity d and correlation length ξ shows that the structural heterogeneities are governed by the interplay between the alkyl chain length, the geometry of the anion, and entropic effects. Connections between the mesoscopic correlation functions, density, and entropy of fusion are discussed in comparison to alcohols. The observed dependencies allow predictions on the mesoscopic correlation functions based on macroscopic bulk quantities.

19.
Langmuir ; 32(45): 11928-11938, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27934065

ABSTRACT

The structure of sugar-surfactant-based bicontinuous microemulsions in the bulk and at hydrophilic and hydrophobic solid planar surfaces was studied by means of neutron scattering techniques (SANS, NR, and GISANS). In particular, the influence of the type of oil (tetradecane and methyl oleate) on the structural properties in the vicinity of surfaces was investigated at different oil-to-water ratios. In the case of hydrophilic surfaces, the analysis of the scattering length density profiles reveals an induced ordering of the oil and water domains perpendicular to the solid-liquid interface in both sets of microemulsions. At hydrophobic surfaces, differences in the near-surface ordering between microemulsions containing polar and nonpolar oils are observed.

20.
Nanoscale ; 8(43): 18541-18550, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27782247

ABSTRACT

The magnetic-field-induced assembly of magnetic nanoparticles (NPs) provides a unique and flexible strategy in the design and fabrication of functional nanostructures and devices. We have investigated the field-induced self-assembly of core-shell iron oxide NPs dispersed in toluene by means of small-angle neutron scattering (SANS). The form factor of the core-shell NPs was characterized and analyzed using SANS with polarized neutrons. Large-scale aggregates of iron oxide NPs formed above 0.02 T as indicated by very-small-angle neutron scattering measurements. A three-dimensional long-range ordered superlattice of iron oxide NPs was revealed under the application of a moderate magnetic field. The crystal structure of the superlattice has been identified to be face-centred cubic.

SELECTION OF CITATIONS
SEARCH DETAIL
...