Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
IUCrJ ; 11(Pt 3): 374-383, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38656310

ABSTRACT

The large Bunyavirales order includes several families of viruses with a segmented ambisense (-) RNA genome and a cytoplasmic life cycle that starts by synthesizing viral mRNA. The initiation of transcription, which is common to all members, relies on an endonuclease activity that is responsible for cap-snatching. In La Crosse virus, an orthobunyavirus, it has previously been shown that the cap-snatching endonuclease resides in the N-terminal domain of the L protein. Orthobunyaviruses are transmitted by arthropods and cause diseases in cattle. However, California encephalitis virus, La Crosse virus and Jamestown Canyon virus are North American species that can cause encephalitis in humans. No vaccines or antiviral drugs are available. In this study, three known Influenza virus endonuclease inhibitors (DPBA, L-742,001 and baloxavir) were repurposed on the La Crosse virus endonuclease. Their inhibition was evaluated by fluorescence resonance energy transfer and their mode of binding was then assessed by differential scanning fluorimetry and microscale thermophoresis. Finally, two crystallographic structures were obtained in complex with L-742,001 and baloxavir, providing access to the structural determinants of inhibition and offering key information for the further development of Bunyavirales endonuclease inhibitors.


Subject(s)
Antiviral Agents , Endonucleases , La Crosse virus , Triazines , La Crosse virus/drug effects , La Crosse virus/enzymology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Endonucleases/antagonists & inhibitors , Endonucleases/metabolism , Endonucleases/chemistry , Dibenzothiepins , Morpholines/pharmacology , Morpholines/chemistry , Pyridones/pharmacology , Pyridones/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Fluorescence Resonance Energy Transfer , Humans , Animals , Viral Proteins/antagonists & inhibitors , Viral Proteins/chemistry , Viral Proteins/metabolism
2.
Nucleic Acids Res ; 52(3): 1325-1340, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38096103

ABSTRACT

Nucleotide analogues (NA) are currently employed for treatment of several viral diseases, including COVID-19. NA prodrugs are intracellularly activated to the 5'-triphosphate form. They are incorporated into the viral RNA by the viral polymerase (SARS-CoV-2 nsp12), terminating or corrupting RNA synthesis. For Coronaviruses, natural resistance to NAs is provided by a viral 3'-to-5' exonuclease heterodimer nsp14/nsp10, which can remove terminal analogues. Here, we show that the replacement of the α-phosphate of Bemnifosbuvir 5'-triphosphate form (AT-9010) by an α-thiophosphate renders it resistant to excision. The resulting α-thiotriphosphate, AT-9052, exists as two epimers (RP/SP). Through co-crystallization and activity assays, we show that the Sp isomer is preferentially used as a substrate by nucleotide diphosphate kinase (NDPK), and by SARS-CoV-2 nsp12, where its incorporation causes immediate chain-termination. The same -Sp isomer, once incorporated by nsp12, is also totally resistant to the excision by nsp10/nsp14 complex. However, unlike AT-9010, AT-9052-RP/SP no longer inhibits the N-terminal nucleotidylation domain of nsp12. We conclude that AT-9052-Sp exhibits a unique mechanism of action against SARS-CoV-2. Moreover, the thio modification provides a general approach to rescue existing NAs whose activity is hampered by coronavirus proofreading capacity.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Polyphosphates , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , COVID-19/virology , Exonucleases , Nucleotides/metabolism , Nucleotidyltransferases , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism
3.
J Med Chem ; 66(7): 4633-4658, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36939673

ABSTRACT

The rapid identification of early hits by fragment-based approaches and subsequent hit-to-lead optimization represents a challenge for drug discovery. To address this challenge, we created a strategy called "DOTS" that combines molecular dynamic simulations, computer-based library design (chemoDOTS) with encoded medicinal chemistry reactions, constrained docking, and automated compound evaluation. To validate its utility, we applied our DOTS strategy to the challenging target syntenin, a PDZ domain containing protein and oncology target. Herein, we describe the creation of a "best-in-class" sub-micromolar small molecule inhibitor for the second PDZ domain of syntenin validated in cancer cell assays. Key to the success of our DOTS approach was the integration of protein conformational sampling during hit identification stage and the synthetic feasibility ranking of the designed compounds throughout the optimization process. This approach can be broadly applied to other protein targets with known 3D structures to rapidly identify and optimize compounds as chemical probes and therapeutic candidates.


Subject(s)
PDZ Domains , Syntenins , Drug Discovery , Syndecans/metabolism
4.
Antiviral Res ; 212: 105574, 2023 04.
Article in English | MEDLINE | ID: mdl-36905944

ABSTRACT

AT-752 is a guanosine analogue prodrug active against dengue virus (DENV). In infected cells, it is metabolized into 2'-methyl-2'-fluoro guanosine 5'-triphosphate (AT-9010) which inhibits RNA synthesis in acting as a RNA chain terminator. Here we show that AT-9010 has several modes of action on DENV full-length NS5. AT-9010 does not inhibit the primer pppApG synthesis step significantly. However, AT-9010 targets two NS5-associated enzyme activities, the RNA 2'-O-MTase and the RNA-dependent RNA polymerase (RdRp) at its RNA elongation step. Crystal structure and RNA methyltransferase (MTase) activities of the DENV 2 MTase domain in complex with AT-9010 at 1.97 Å resolution shows the latter bound to the GTP/RNA-cap binding site, accounting for the observed inhibition of 2'-O but not N7-methylation activity. AT-9010 is discriminated ∼10 to 14-fold against GTP at the NS5 active site of all four DENV1-4 NS5 RdRps, arguing for significant inhibition through viral RNA synthesis termination. In Huh-7 cells, DENV1-4 are equally sensitive to AT-281, the free base of AT-752 (EC50 ≈ 0.50 µM), suggesting broad spectrum antiviral properties of AT-752 against flaviviruses.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue/drug therapy , Dengue Virus/physiology , Guanosine/pharmacology , Guanosine/metabolism , Guanosine Triphosphate/metabolism , RNA, Viral/metabolism , Viral Nonstructural Proteins/genetics , Virus Replication
5.
Antiviral Res ; 204: 105364, 2022 08.
Article in English | MEDLINE | ID: mdl-35716929

ABSTRACT

Viral exoribonucleases are uncommon in the world of RNA viruses. To date, they have only been identified in the Arenaviridae and the Coronaviridae families. The exoribonucleases of these viruses play a crucial role in the pathogenicity and interplay with host innate immune response. Moreover, coronaviruses exoribonuclease is also involved in a proofreading mechanism ensuring the genetic stability of the viral genome. Because of their key roles in virus life cycle, they constitute attractive target for drug design. Here we developed a sensitive, robust and reliable fluorescence polarization assay to measure the exoribonuclease activity and its inhibition in vitro. The effectiveness of the method was validated on three different viral exoribonucleases, including SARS-CoV-2, Lymphocytic Choriomeningitis and Machupo viruses. We performed a screening of a focused library consisting of 113 metal chelators. Hit compounds were recovered with an IC50 at micromolar level. We confirmed 3 hits in SARS-CoV-2 infected Vero-E6 cells.


Subject(s)
Antiviral Agents , Arenavirus , Exoribonucleases , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Arenavirus/drug effects , Chlorocebus aethiops , Exoribonucleases/antagonists & inhibitors , Fluorescence Polarization , SARS-CoV-2/drug effects , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors
6.
Nat Commun ; 13(1): 621, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35110538

ABSTRACT

The guanosine analog AT-527 represents a promising candidate against Severe Acute Respiratory Syndrome coronavirus type 2 (SARS-CoV-2). AT-527 recently entered phase III clinical trials for the treatment of COVID-19. Once in cells, AT-527 is converted into its triphosphate form, AT-9010, that presumably targets the viral RNA-dependent RNA polymerase (RdRp, nsp12), for incorporation into viral RNA. Here we report a 2.98 Å cryo-EM structure of the SARS-CoV-2 nsp12-nsp7-nsp82-RNA complex, showing AT-9010 bound at three sites of nsp12. In the RdRp active-site, one AT-9010 is incorporated at the 3' end of the RNA product strand. Its modified ribose group (2'-fluoro, 2'-methyl) prevents correct alignment of the incoming NTP, in this case a second AT-9010, causing immediate termination of RNA synthesis. The third AT-9010 is bound to the N-terminal domain of nsp12 - known as the NiRAN. In contrast to native NTPs, AT-9010 is in a flipped orientation in the active-site, with its guanine base unexpectedly occupying a previously unnoticed cavity. AT-9010 outcompetes all native nucleotides for NiRAN binding, inhibiting its nucleotidyltransferase activity. The dual mechanism of action of AT-527 at both RdRp and NiRAN active sites represents a promising research avenue against COVID-19.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Guanosine Monophosphate/analogs & derivatives , Phosphoramides/chemistry , Phosphoramides/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/enzymology , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , COVID-19/virology , Cryoelectron Microscopy , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Guanosine Monophosphate/chemistry , Guanosine Monophosphate/pharmacology , Humans , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Viral Proteins/genetics
7.
Eur J Med Chem ; 223: 113601, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34153575

ABSTRACT

Syntenin stimulates exosome production and its expression is upregulated in many cancers and implicated in the spread of metastatic tumor. These effects are supported by syntenin PDZ domains interacting with syndecans. We therefore aimed to develop, through a fragment-based drug design approach, novel inhibitors targeting syntenin-syndecan interactions. We describe here the optimization of a fragment, 'hit' C58, identified by in vitro screening of a PDZ-focused fragment library, which binds specifically to the syntenin-PDZ2 domain at the same binding site as the syndecan-2 peptide. X-ray crystallographic structures and computational docking were used to guide our optimization process and lead to compounds 45 and 57 (IC50 = 33 µM and 47 µM; respectively), two representatives of syntenin-syndecan interactions inhibitors, that selectively affect the syntenin-exosome release. These findings demonstrate that it is possible to identify small molecules inhibiting syntenin-syndecan interaction and exosome release that may be useful for cancer therapy.


Subject(s)
Amino Acids/pharmacology , Antineoplastic Agents/pharmacology , Benzene Derivatives/pharmacology , Exosomes/metabolism , Syntenins/metabolism , Amino Acids/chemical synthesis , Amino Acids/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Benzene Derivatives/chemical synthesis , Benzene Derivatives/metabolism , Drug Design , Humans , MCF-7 Cells , Molecular Docking Simulation , Molecular Structure , PDZ Domains , Protein Binding/drug effects , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Syndecans/metabolism , Syntenins/chemistry
8.
Mol Oncol ; 14(12): 3083-3099, 2020 12.
Article in English | MEDLINE | ID: mdl-33021050

ABSTRACT

The concept of polypharmacology involves the interaction of drug molecules with multiple molecular targets. It provides a unique opportunity for the repurposing of already-approved drugs to target key factors involved in human diseases. Herein, we used an in silico target prediction algorithm to investigate the mechanism of action of mebendazole, an antihelminthic drug, currently repurposed in the treatment of brain tumors. First, we confirmed that mebendazole decreased the viability of glioblastoma cells in vitro (IC50 values ranging from 288 nm to 2.1 µm). Our in silico approach unveiled 21 putative molecular targets for mebendazole, including 12 proteins significantly upregulated at the gene level in glioblastoma as compared to normal brain tissue (fold change > 1.5; P < 0.0001). Validation experiments were performed on three major kinases involved in cancer biology: ABL1, MAPK1/ERK2, and MAPK14/p38α. Mebendazole could inhibit the activity of these kinases in vitro in a dose-dependent manner, with a high potency against MAPK14 (IC50  = 104 ± 46 nm). Its direct binding to MAPK14 was further validated in vitro, and inhibition of MAPK14 kinase activity was confirmed in live glioblastoma cells. Consistent with biophysical data, molecular modeling suggested that mebendazole was able to bind to the catalytic site of MAPK14. Finally, gene silencing demonstrated that MAPK14 is involved in glioblastoma tumor spheroid growth and response to mebendazole treatment. This study thus highlighted the role of MAPK14 in the anticancer mechanism of action of mebendazole and provides further rationale for the pharmacological targeting of MAPK14 in brain tumors. It also opens new avenues for the development of novel MAPK14/p38α inhibitors to treat human diseases.


Subject(s)
Computer Simulation , Mebendazole/therapeutic use , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Molecular Targeted Therapy , Protein Kinase Inhibitors/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Inhibitory Concentration 50 , Mebendazole/chemistry , Mebendazole/pharmacology , Mitogen-Activated Protein Kinase 14/metabolism , Models, Molecular , Protein Kinase Inhibitors/pharmacology
9.
Nucleic Acids Res ; 45(7): 4120-4130, 2017 04 20.
Article in English | MEDLINE | ID: mdl-27994030

ABSTRACT

SLM2 and Sam68 are splicing regulator paralogs that usually overlap in function, yet only SLM2 and not Sam68 controls the Neurexin2 AS4 exon important for brain function. Herein we find that SLM2 and Sam68 similarly bind to Neurexin2 pre-mRNA, both within the mouse cortex and in vitro. Protein domain-swap experiments identify a region including the STAR domain that differentiates SLM2 and Sam68 activity in splicing target selection, and confirm that this is not established via the variant amino acids involved in RNA contact. However, far fewer SLM2 and Sam68 RNA binding sites flank the Neurexin2 AS4 exon, compared with those flanking the Neurexin1 and Neurexin3 AS4 exons under joint control by both Sam68 and SLM2. Doubling binding site numbers switched paralog sensitivity, by placing the Neurexin2 AS4 exon under joint splicing control by both Sam68 and SLM2. Our data support a model where the density of shared RNA binding sites around a target exon, rather than different paralog-specific protein-RNA binding sites, controls functional target specificity between SLM2 and Sam68 on the Neurexin2 AS4 exon. Similar models might explain differential control by other splicing regulators within families of paralogs with indistinguishable RNA binding sites.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Nerve Tissue Proteins/genetics , RNA-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Alternative Splicing , Animals , Binding Sites , Exons , Introns , Mice , Mice, Knockout , Nerve Tissue Proteins/metabolism , Protein Domains , RNA Precursors/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Substrate Specificity
10.
Nat Commun ; 7: 10355, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26758068

ABSTRACT

Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-binding domain. Their specificity of RNA recognition is thought to arise from their property to homodimerize, but how dimerization influences their function remains unknown. Here, we establish at atomic resolution how T-STAR and Sam68 bind to RNA, revealing an unexpected mode of dimerization different from other members of the STAR family. We further demonstrate that this unique dimerization interface is crucial for their biological activity in splicing regulation, and suggest that the increased RNA affinity through dimer formation is a crucial parameter enabling these proteins to select their functional targets within the transcriptome.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Alternative Splicing , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Amino Acid Sequence , Animals , Dimerization , HEK293 Cells , Humans , Male , Mice , Molecular Sequence Data , Nucleotide Motifs , Protein Structure, Tertiary , RNA/metabolism , Structure-Activity Relationship
11.
Biochem Soc Trans ; 42(4): 1141-6, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25110016

ABSTRACT

STAR (signal transduction and activation of RNA) proteins are a family of RNA-binding proteins that regulate post-transcriptional gene regulation events at various levels, such as pre-mRNA alternative splicing, RNA export, translation and stability. Most of these proteins are regulated by signalling pathways through post-translational modifications, such as phosphorylation and arginine methylation. These proteins share a highly conserved RNA-binding domain, denoted STAR domain. Structural investigations of this STAR domain in complex with RNA have highlighted how a subset of STAR proteins specifically recognizes its RNA targets. The present review focuses on the structural basis of RNA recognition by this family of proteins.


Subject(s)
RNA Precursors/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Alternative Splicing/genetics , Alternative Splicing/physiology , Animals , Caenorhabditis elegans Proteins/metabolism , Humans
12.
Methods ; 65(3): 288-301, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24096002

ABSTRACT

In the past few years, RNA molecules have been revealed to be at the center of numerous biological processes. Long considered as passive molecules transferring genetic information from DNA to proteins, it is now well established that RNA molecules play important regulatory roles. Associated with that, the number of identified RNA binding proteins (RBPs) has increased considerably and mutations in RNA molecules or RBP have been shown to cause various diseases, such as cancers. It is therefore crucial to understand at the molecular level how these proteins specifically recognise their RNA targets in order to design new generation drug therapies targeting protein-RNA complexes. Nuclear magnetic resonance (NMR) is a particularly well-suited technique to study such protein-RNA complexes at the atomic level and can provide valuable information for new drug discovery programs. In this article, we describe the NMR strategy that we and other laboratories use for screening optimal conditions necessary for structural studies of protein-single stranded RNA complexes, using two proteins, Sam68 and T-STAR, as examples.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Aptamers, Nucleotide/chemistry , DNA-Binding Proteins/chemistry , RNA-Binding Proteins/chemistry , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Aptamers, Nucleotide/chemical synthesis , Binding Sites , Crystallography, X-Ray , DNA-Binding Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , RNA-Binding Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Alignment , Sequence Homology, Amino Acid
13.
J Biol Chem ; 287(53): 44703-13, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23124203

ABSTRACT

During B cell differentiation in the bone marrow, the expression and activation of the pre-B cell receptor (pre-BCR) constitute crucial checkpoints for B cell development. Both constitutive and ligand-dependent pre-BCR activation modes have been described. The pre-BCR constitutes an immunoglobulin heavy chain (Igµ) and a surrogate light chain composed of the invariant λ5 and VpreB proteins. We previously showed that galectin-1 (GAL1), produced by bone marrow stromal cells, is a pre-BCR ligand that induces receptor clustering, leading to efficient pre-BII cell proliferation and differentiation. GAL1 interacts with the pre-BCR via the unique region of λ5 (λ5-UR). Here, we investigated the solution structure of a minimal λ5-UR motif that interacts with GAL1. This motif adopts a stable helical conformation that docks onto a GAL1 hydrophobic surface adjacent to its carbohydrate binding site. We identified key hydrophobic residues from the λ5-UR as crucial for the interaction with GAL1 and for pre-BCR clustering. These residues involved in GAL1-induced pre-BCR activation are different from those essential for autonomous receptor activation. Overall, our results indicate that constitutive and ligand-induced pre-BCR activation could occur in a complementary manner.


Subject(s)
Galectin 1/chemistry , Galectin 1/metabolism , Pre-B Cell Receptors/chemistry , Pre-B Cell Receptors/metabolism , Precursor Cells, B-Lymphoid/metabolism , Binding Sites , Cell Differentiation , Cell Line , Cell Proliferation , Crystallography, X-Ray , Galectin 1/genetics , Humans , Ligands , Models, Molecular , Pre-B Cell Receptors/genetics , Precursor Cells, B-Lymphoid/chemistry , Precursor Cells, B-Lymphoid/cytology , Stromal Cells/cytology , Stromal Cells/metabolism
14.
FEBS Lett ; 585(17): 2688-92, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21840311

ABSTRACT

Tyrosine phosphorylations are essential in signal transduction. Recently, a new type of phosphotyrosine binding protein, MEMO (Mediator of ErbB2-driven cell motility), has been reported to bind specifically to an ErbB2-derived phosphorylated peptide encompassing Tyr-1227 (PYD). Structural and functional analyses of variants of this peptide revealed the minimum sequence required for MEMO recognition. Using a docking approach we have generated a structural model for MEMO/PYD complex and compare this new phosphotyrosine motif to SH2 and PTB phosphotyrosine motives.


Subject(s)
Nonheme Iron Proteins/metabolism , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Phosphotyrosine/chemistry , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/metabolism , Amino Acid Motifs , Humans , Intracellular Signaling Peptides and Proteins , Phosphopeptides/chemical synthesis , Protein Binding
15.
Biophys J ; 97(12): 3168-77, 2009 Dec 16.
Article in English | MEDLINE | ID: mdl-20006954

ABSTRACT

The specific recognition of carbohydrates by lectins plays a major role in many cellular processes. Galectin-1 belongs to a family of 15 structurally related beta-galactoside binding proteins that are able to control a variety of cellular events, including cell cycle regulation, adhesion, proliferation, and apoptosis. The three-dimensional structure of galectin-1 has been solved by x-ray crystallography in the free form and in complex with various carbohydrate ligands. In this work, we used a combination of two-dimensional NMR titration experiments and molecular-dynamics simulations with explicit solvent to study the mode of interaction between human galectin-1 and five galactose-containing ligands. Isothermal titration calorimetry measurements were performed to determine their affinities for galectin-1. The contribution of the different hexopyranose units in the protein-carbohydrate interaction was given particular consideration. Although the galactose moiety of each oligosaccharide is necessary for binding, it is not sufficient by itself. The nature of both the reducing sugar in the disaccharide and the interglycosidic linkage play essential roles in the binding to human galectin-1.


Subject(s)
Galectin 1/chemistry , Galectin 1/metabolism , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Calorimetry , Disaccharides/chemistry , Disaccharides/metabolism , Galactose/chemistry , Galactose/metabolism , Glycosides/chemistry , Humans , Hydrogen Bonding , Ligands , Molecular Conformation , Protein Binding , Protein Stability , Software , Thermodynamics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...