Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Genetics ; 223(3)2023 03 02.
Article in English | MEDLINE | ID: mdl-36573271

ABSTRACT

During nervous system development, neurons send out axons, which must navigate large distances to reach synaptic targets. Axons grow out sequentially. The early outgrowing axons, pioneers, must integrate information from various guidance cues in their environment to determine the correct direction of outgrowth. Later outgrowing follower axons can at least in part navigate by adhering to pioneer axons. In Caenorhabditis elegans, the right side of the largest longitudinal axon tract, the ventral nerve cord, is pioneered by the AVG axon. How the AVG axon navigates is only partially understood. In this study, we describe the role of two members of the IgCAM family, wrk-1 and rig-5, in AVG axon navigation. While wrk-1 and rig-5 single mutants do not show AVG navigation defects, both mutants have highly penetrant pioneer and follower navigation defects in a nid-1 mutant background. Both mutations increase the fraction of follower axons following the misguided pioneer axon. We found that wrk-1 and rig-5 act in different genetic pathways, suggesting that we identified two pioneer-independent guidance pathways used by follower axons. We assessed general locomotion, mechanosensory responsiveness, and habituation to determine whether axonal navigation defects impact nervous system function. In rig-5 nid-1 double mutants, we found no significant defects in free movement behavior; however, a subpopulation of animals shows minor changes in response duration habituation after mechanosensory stimulation. These results suggest that guidance defects of axons in the motor circuit do not necessarily lead to major movement or behavioral defects but impact more complex behavioral modulation.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Axons/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Mutation , Neurons/metabolism
2.
Genetics ; 220(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35143653

ABSTRACT

During nervous system development, axons navigate complex environments to reach synaptic targets. Early extending axons must interact with guidance cues in the surrounding tissue, while later extending axons can interact directly with earlier "pioneering" axons, "following" their path. In Caenorhabditis elegans, the AVG neuron pioneers the right axon tract of the ventral nerve cord. We previously found that aex-3, a rab-3 guanine nucleotide exchange factor, is essential for AVG axon navigation in a nid-1 mutant background and that aex-3 might be involved in trafficking of UNC-5, a receptor for the guidance cue UNC-6/netrin. Here, we describe a new gene in this pathway: ccd-5, a putative cdk-5 binding partner. ccd-5 mutants exhibit increased navigation defects of AVG pioneer as well as interneuron and motor neuron follower axons in a nid-1 mutant background. We show that ccd-5 acts in a pathway with cdk-5, aex-3, and unc-5. Navigation defects of follower interneuron and motoneuron axons correlate with AVG pioneer axon defects. This suggests that ccd-5 mostly affects pioneer axon navigation and that follower axon defects are largely a secondary consequence of pioneer navigation defects. To determine the consequences for nervous system function, we assessed various behavioral and movement parameters. ccd-5 single mutants have no significant movement defects, and nid-1 ccd-5 double mutants are less responsive to mechanosensory stimuli compared with nid-1 single mutants. These surprisingly minor defects indicate either a high tolerance for axon guidance defects within the motor circuit and/or an ability to maintain synaptic connections among commonly misguided axons.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Axon Guidance/genetics , Axons/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Netrins/metabolism , Neurons/metabolism , Receptors, Cell Surface/metabolism
3.
Neurosci Lett ; 591: 36-40, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25684243

ABSTRACT

Antipsychotics remain the standard of care for individuals with schizophrenia, despite their association with adverse effects including extrapyramidal symptoms, metabolic syndrome and agranulocytosis. While the biological mechanisms underlying these side effects remain unresolved, it has been proposed that oxidative stress may play a role in their development. The aim of this study was to evaluate markers of oxidative stress associated with first- and second-generation antipsychotics, focusing on protein and lipid oxidation and expression of the antioxidant proteins peroxiredoxin-2 and peroxiredoxin-6. Following 28-day administration of haloperidol, clozapine or saline to adult rats, brain grey matter, white matter, serum and liver samples were obtained and lipid peroxidation, protein oxidation, peroxiredoxin-2 and peroxiredoxin-6 levels quantified. In grey matter, peroxiredoxin-6 was significantly increased in the haloperidol-exposed animals, with a trend towards increased lipid peroxidation also observed in this group. In liver, lipid peroxidation was increased in the clozapine-exposed animals, with a similar trend noted in the haloperidol group. Antipsychotics did not produce significant changes in serum or white matter. Our results suggest that haloperidol and clozapine may induce oxidative stress in brain and liver, respectively, consistent with the documented adverse effects of these agents.


Subject(s)
Antipsychotic Agents/pharmacology , Brain/drug effects , Clozapine/pharmacology , Haloperidol/pharmacology , Liver/drug effects , Oxidative Stress/drug effects , Animals , Brain/metabolism , Lipid Peroxidation , Liver/metabolism , Male , Organ Specificity , Oxidation-Reduction , Peroxiredoxins/metabolism , Rats, Sprague-Dawley , Serum
4.
Schizophr Res ; 150(1): 252-7, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23911257

ABSTRACT

Astrocyte dysregulation has been implicated in the pathophysiology of schizophrenia (SCZ) and bipolar disorder (BPD), however the exact nature of astrocytic alterations remains to be identified. In this study we investigated whether levels of four astrocyte-specific proteins; glial fibrillary acidic protein (GFAP), aldehyde dehydrogenase 1L1 (ALDH1L1), vimentin and excitatory amino acid transporter 1 (EAAT1) are altered in SCZ and BPD. Relative concentrations of GFAP, ALDH1L1, vimentin and EAAT1 were assessed post-mortem in dorsolateral prefrontal cortex in SCZ (n=35), BPD (n=34) and non-psychiatric controls (n=35) by western blotting. The same proteins were also quantified in cingulate cortex of rats administered the antipsychotics haloperidol and clozapine. Elevated levels of GFAP were observed in SCZ and BPD, when compared to controls. GFAP was also significantly increased when comparing individuals with psychotic symptoms against those without. Vimentin, ALDH1L1 and EAAT1 levels did not differ between groups. Rats exposed to antipsychotics did not exhibit significant differences in any astrocytic protein, suggesting that increased GFAP in SCZ is not attributable to antipsychotic treatment. Our findings indicate that astrocyte pathology may be associated with psychotic symptoms. Lack of ALDH1L1 and vimentin variability and increased GFAP levels may imply that astrocyte numbers are unchanged but astrocytes are partially activated, or may indicate a specific dysregulation of GFAP.


Subject(s)
Gene Expression Regulation/physiology , Glial Fibrillary Acidic Protein/metabolism , Prefrontal Cortex/metabolism , Psychotic Disorders/pathology , Adult , Aldehyde Dehydrogenase/metabolism , Analysis of Variance , Animals , Antipsychotic Agents/pharmacology , Bipolar Disorder/pathology , Chi-Square Distribution , Excitatory Amino Acid Transporter 1/metabolism , Female , Gene Expression Regulation/drug effects , Humans , Male , Middle Aged , Molecular Weight , Oxidoreductases Acting on CH-NH Group Donors , Rats , Rats, Sprague-Dawley , Vimentin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL