Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 134: 166-176, 2018 Sep.
Article in English | MEDLINE | ID: mdl-28935363

ABSTRACT

Seagrass ecosystems are inherently dynamic, responding to environmental change across a range of scales. Habitat requirements of seagrass are well defined, but less is known about their ability to resist disturbance. Specific means of recovery after loss are particularly difficult to quantify. Here we assess the resistance and recovery capacity of 12 seagrass genera. We document four classic trajectories of degradation and recovery for seagrass ecosystems, illustrated with examples from around the world. Recovery can be rapid once conditions improve, but seagrass absence at landscape scales may persist for many decades, perpetuated by feedbacks and/or lack of seed or plant propagules to initiate recovery. It can be difficult to distinguish between slow recovery, recalcitrant degradation, and the need for a window of opportunity to trigger recovery. We propose a framework synthesizing how the spatial and temporal scales of both disturbance and seagrass response affect ecosystem trajectory and hence resilience.


Subject(s)
Alismatales/physiology , Ecosystem , Models, Biological , Zosteraceae/physiology , Environment , Oceans and Seas , Spatio-Temporal Analysis
2.
Sci Total Environ ; 566-567: 929-937, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27285534

ABSTRACT

Jellyfish often form blooms that persist for weeks to months before they collapse en masse, resulting in the sudden release of large amounts of organic matter to the environment. This study investigated the biogeochemical and ecological effects of the decomposition of jellyfish in a shallow coastal lagoon in New South Wales, Australia. Catostylus mosaicus carrion was added to the surface of shallow sub-tidal sediments and biogeochemical parameters and macrofaunal abundance immediately below the jellyfish carrion were measured over three days. Sediment plots without jellyfish served as controls. Sediment oxygen demand and carbon and nitrogen efflux increased by up to 60-fold in the jellyfish plots, compared to control plots, and dissolved organic nutrient fluxes were more sustained than in previous studies due to the use of fresh rather than frozen biomass. The decomposing jellyfish progressively altered sediment redox conditions, indicated by an increase in porewater iron (II) and sulfide concentrations measured by high-resolution in situ diffusive samplers. Abundance of some macrofaunal taxa in the jellyfish plots decreased relative to controls, however, the abundance of a carnivorous gastropod, which was presumably feeding on the carrion, increased in the jellyfish plots. While jellyfish carrion may be a food source for some macrofauna, low oxygen conditions coupled with the accumulation of toxic dissolved sulfides in the near-surface sediments may explain the overall change in the macroinfaunal community.


Subject(s)
Biota , Geologic Sediments/chemistry , Invertebrates/physiology , Scyphozoa/physiology , Animals , Death , Environmental Monitoring , New South Wales , Oxidation-Reduction , Water Pollution
SELECTION OF CITATIONS
SEARCH DETAIL
...