Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(5): e11363, 2024 May.
Article in English | MEDLINE | ID: mdl-38770124

ABSTRACT

Understanding the adaptability of small populations in the face of environmental change is a central problem in evolutionary biology. Solving this problem is challenging because neutral evolutionary processes that operate on historical and contemporary timescales can override the effects of selection in small populations. We assessed the effects of isolation by colonization (IBC), isolation by dispersal limitation (IBDL) as reflected by a pattern of isolation by distance (IBD), and isolation by adaptation (IBA) and the roles of genetic drift and gene flow on patterns of genetic differentiation among 19 cave-dwelling populations of Icelandic Arctic charr (Salvelinus alpinus). We detected evidence of IBC based on the genetic affinity of nearby cave populations and the genetic relationships between the cave populations and the presumed ancestral population in the lake. A pattern of IBD was evident regardless of whether high-level genetic structuring (IBC) was taken into account. Genetic signatures of bottlenecks and lower genetic diversity in smaller populations indicate the effect of drift. Estimates of gene flow and fish movement suggest that gene flow is limited to nearby populations. In contrast, we found little evidence of IBA as patterns of local ecological and phenotypic variation showed little association with genetic differentiation among populations. Thus, patterns of genetic variation in these small populations likely reflect localized gene flow and genetic drift superimposed onto a larger-scale structure that is largely a result of colonization history. Our simultaneous assessment of the effects of neutral and adaptive processes in a tractable and replicated system has yielded novel insights into the evolution of small populations on both historical and contemporary timescales and over a smaller spatial scale than is typically studied.

2.
BMC Ecol Evol ; 24(1): 45, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622503

ABSTRACT

BACKGROUND: A major goal in evolutionary biology is to understand the processes underlying phenotypic variation in nature. Commonly, studies have focused on large interconnected populations or populations found along strong environmental gradients. However, studies on small fragmented populations can give strong insight into evolutionary processes in relation to discrete ecological factors. Evolution in small populations is believed to be dominated by stochastic processes, but recent work shows that small populations can also display adaptive phenotypic variation, through for example plasticity and rapid adaptive evolution. Such evolution takes place even though there are strong signs of historical bottlenecks and genetic drift. Here we studied 24 small populations of the freshwater fish Arctic charr (Salvelinus alpinus) found in groundwater filled lava caves. Those populations were found within a few km2-area with no apparent water connections between them. We studied the relative contribution of neutral versus non-neutral evolutionary processes in shaping phenotypic divergence, by contrasting patterns of phenotypic and neutral genetic divergence across populations in relation to environmental measurements. This allowed us to model the proportion of phenotypic variance explained by the environment, taking in to account the observed neutral genetic structure. RESULTS: These populations originated from the nearby Lake Mývatn, and showed small population sizes with low genetic diversity. Phenotypic variation was mostly correlated with neutral genetic diversity with only a small environmental effect. CONCLUSIONS: Phenotypic diversity in these cave populations appears to be largely the product of neutral processes, fitting the classical evolutionary expectations. However, the fact that neutral processes did not explain fully the phenotypic patterns suggests that further studies can increase our understanding on how neutral evolutionary processes can interact with other forces of selection at early stages of divergence. The accessibility of these populations has provided the opportunity for long-term monitoring of individual fish, allowing tracking how the environment can influence phenotypic and genetic divergence for shaping and maintaining diversity in small populations. Such studies are important, especially in freshwater, as habitat alteration is commonly breaking populations into smaller units, which may or may not be viable.


Subject(s)
Ecosystem , Genetic Drift , Animals , Trout/genetics
3.
Mol Ecol ; 31(18): 4688-4706, 2022 09.
Article in English | MEDLINE | ID: mdl-35861579

ABSTRACT

Sympatric adaptive phenotypic divergence should be underlain by genomic differentiation between subpopulations. When divergence drives similar patterns of phenotypic and ecological variation within species we expect evolution to draw on common allelic variation. We investigated divergence histories and genomic signatures of adaptive divergence between benthic and pelagic morphs of Icelandic Arctic charr. Divergence histories for each of four populations were reconstructed using coalescent modelling and 14,187 single nucleotide polymorphisms. Sympatric divergence with continuous gene flow was supported in two populations while allopatric divergence with secondary contact was supported in one population; we could not differentiate between demographic models in the fourth population. We detected parallel patterns of phenotypic divergence along benthic-pelagic evolutionary trajectories among populations. Patterns of genomic differentiation between benthic and pelagic morphs were characterized by outlier loci in many narrow peaks of differentiation throughout the genome, which may reflect the eroding effects of gene flow on nearby neutral loci. We then used genome-wide association analyses to relate both phenotypic (body shape and size) and ecological (carbon and nitrogen stable isotopes) variation to patterns of genomic differentiation. Many peaks of genomic differentiation were associated with phenotypic and ecological variation in the three highly divergent populations, suggesting a genomic basis for adaptive divergence. We detected little evidence for a parallel genomic basis of differentiation as most regions and outlier loci were not shared among populations. Our results show that adaptive divergence can have varied genomic consequences in populations with relatively recent common origins, similar divergence histories, and parallel phenotypic divergence.


Subject(s)
Genome-Wide Association Study , Trout , Animals , Genome/genetics , Genomics , Iceland , Trout/genetics
4.
Am Nat ; 199(5): 617-635, 2022 05.
Article in English | MEDLINE | ID: mdl-35472018

ABSTRACT

AbstractThe potentially significant genetic consequences associated with the loss of migratory capacity of diadromous fishes that have become landlocked in freshwater are poorly understood. Consistent selective pressures associated with freshwater residency may drive repeated differentiation both between allopatric landlocked and anadromous populations and within landlocked populations (resulting in sympatric morphs). Alternatively, the strong genetic drift anticipated in isolated landlocked populations could hinder consistent adaptation, limiting genetic parallelism. Understanding the degree of genetic parallelism underlying differentiation has implications for both the predictability of evolution and management practices. We employed an 87k single-nucleotide polymorphism (SNP) array to examine the genetic characteristics of landlocked and anadromous Arctic char (Salvelinus alpinus) populations from five drainages within Labrador, Canada. One gene was detected as an outlier between sympatric, size-differentiated morphs in each of two landlocked lakes. While no single locus differentiated all replicate pairs of landlocked and anadromous populations, several SNPs, genes, and paralogs were consistently detected as outliers in at least 70% of these pairwise comparisons. A significant C-score suggested that the amount of shared outlier SNPs across all paired landlocked and anadromous populations was greater than expected by chance. Our results indicate that despite their isolation, selection due to the loss of diadromy may drive consistent genetic responses in landlocked populations.


Subject(s)
Lakes , Trout , Animals , Arctic Regions , Genome , Genomics , Trout/genetics
5.
Ecol Evol ; 11(12): 7315-7334, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188815

ABSTRACT

Conceptual models of adaptive divergence and ecological speciation in sympatry predict differential resource use, phenotype-environment correlations, and reduced gene flow among diverging phenotypes. While these predictions have been assessed in past studies, connections among them have rarely been assessed collectively. We examined relationships among phenotypic, ecological, and genetic variation in Arctic charr (Salvelinus alpinus) from six Icelandic localities that have undergone varying degrees of divergence into sympatric benthic and pelagic morphs. We characterized morphological variation with geometric morphometrics, tested for differential resource use between morphs using stable isotopes, and inferred the amount of gene flow from single nucleotide polymorphisms. Analysis of stable isotopic signatures indicated that sympatric morphs showed similar difference in resource use across populations, likely arising from the common utilization of niche space within each population. Carbon isotopic signature was also a significant predictor of individual variation in body shape and size, suggesting that variation in benthic and pelagic resource use is associated with phenotypic variation. The estimated percentage of hybrids between sympatric morphs varied across populations (from 0% to 15.6%) but the majority of fish had genotypes (ancestry coefficients) characteristic of pure morphs. Despite evidence of reduced gene flow between sympatric morphs, we did not detect the expected negative relationship between divergence in resource use and gene flow. Three lakes showed the expected pattern, but morphs in the fourth showed no detectable hybridization and had relatively low differences in resource use between them. This coupled with the finding that resource use and genetic differentiation had differential effects on body shape variation across populations suggests that reproductive isolation maintains phenotypic divergence between benthic and pelagic morphs when the effects of resource use are relatively low. Our ability to assess relationships between phenotype, ecology, and genetics deepens our understanding of the processes underlying adaptive divergence in sympatry.

6.
Mol Ecol ; 30(18): 4415-4432, 2021 09.
Article in English | MEDLINE | ID: mdl-34152667

ABSTRACT

The post-glacial colonization of Gander Lake in Newfoundland, Canada, by Arctic Charr (Salvelinus alpinus) provides the opportunity to study the genomic basis of adaptation to extreme deep-water environments. Colonization of deep-water (>50 m) habitats often requires extensive adaptation to cope with novel environmental challenges from high hydrostatic pressure, low temperature, and low light, but the genomic mechanisms underlying evolution in these environments are rarely known. Here, we compare genomic divergence between a deep-water morph adapted to depths of up to 288 m and a larger, piscivorous pelagic morph occupying shallower depths. Using both a SNP array and resequencing of whole nuclear and mitochondrial genomes, we find clear genetic divergence (FST  = 0.11-0.15) between deep and shallow water morphs, despite an absence of morph divergence across the mitochondrial genome. Outlier analyses identified many diverged genomic regions containing genes enriched for processes such as gene expression and DNA repair, cardiac function, and membrane transport. Detection of putative copy number variants (CNVs) uncovered 385 genes with CNVs distinct to piscivorous morphs, and 275 genes with CNVs distinct to deep-water morphs, enriched for processes associated with synapse assembly. Demographic analyses identified evidence for recent and local morph divergence, and ongoing reductions in diversity consistent with postglacial colonization. Together, these results show that Arctic Charr morph divergence has occurred through genome-wide differentiation and elevated divergence of genes underlying multiple cellular and physiological processes, providing insight into the genomic basis of adaptation in a deep-water habitat following postglacial recolonization.


Subject(s)
Trout , Water , Adaptation, Physiological/genetics , Animals , Genome , Genomics , Trout/genetics
8.
Mol Ecol ; 29(22): 4280-4294, 2020 11.
Article in English | MEDLINE | ID: mdl-32926595

ABSTRACT

The genetic underpinnings of incipient speciation, including the genomic mechanisms which contribute to morphological and ecological differentiation and reproductive isolation, remain poorly understood. The repeated evolution of consistently, phenotypically distinct morphs of Arctic Charr (Salvelinus alpinus) within the Quaternary period offer an ideal model to study the repeatability of evolution at the genomic level. Sympatric morphs of Arctic Charr are found across this species' circumpolar distribution. However, the specific genetic mechanisms driving this morph differentiation are largely unknown despite the cultural and economic importance of the anadromous morph. We used a newly designed 87k SNP chip to investigate the character and consistency of the genomic differences among sympatric morphs within three recently deglaciated and geographically proximate lakes in Labrador, Canada. We found genetically distinct small and large morph Arctic Charr in all three lakes consistent with resident and anadromous morphs, respectively. A degree of reproductive isolation among sympatric morphs is likely given genome-wide distributions of outlier SNPs and high genome-wide FST s. Across all lakes, outlier SNPs were largely nonoverlapping suggesting a lack of genetic parallelism driving morph differentiation. Alternatively, several genes and paralogous copies of the same gene consistently differentiated morphs across multiple lakes suggesting their importance to the manifestation of morphs. Our results confirm the utility of Arctic Charr as a model for investigating the predictability of evolution and support the importance of both genetic parallelism and nonparallelism to the incipient speciation of Arctic Charr morphs.


Subject(s)
Lakes , Trout , Animals , Arctic Regions , Canada , Newfoundland and Labrador , Trout/genetics
9.
Evol Appl ; 13(5): 1055-1068, 2020 May.
Article in English | MEDLINE | ID: mdl-32431752

ABSTRACT

The resiliency of populations and species to environmental change is dependent on the maintenance of genetic diversity, and as such, quantifying diversity is central to combating ongoing widespread reductions in biodiversity. With the advent of next-generation sequencing, several methods now exist for resolving fine-scale population structure, but the comparative performance of these methods for genetic assignment has rarely been tested. Here, we evaluate the performance of sequenced microsatellites and a single nucleotide polymorphism (SNP) array to resolve fine-scale population structure in a critically important salmonid in north eastern Canada, Arctic Charr (Salvelinus alpinus). We also assess the utility of sequenced microsatellites for fisheries applications by quantifying the spatial scales of movement and exploitation through genetic assignment of fishery samples to rivers of origin and comparing these results with a 29-year tagging dataset. Self-assignment and simulation-based analyses of 111 genome-wide microsatellite loci and 500 informative SNPs from 28 populations of Arctic Charr in north-eastern Canada identified largely river-specific genetic structure. Despite large differences (~4X) in the number of loci surveyed between panels, mean self-assignment accuracy was similar with the microsatellite loci and the SNP panel (>90%). Subsequent analysis of 996 fishery-collected samples using the microsatellite panel revealed that larger rivers contribute greater numbers of individuals to the fishery and that coastal fisheries largely exploit individuals originating from nearby rivers, corroborating results from traditional tagging experiments. Our results demonstrate the efficacy of sequence-based microsatellite genotyping to advance understanding of fine-scale population structure and harvest composition in northern and understudied species.

10.
Biol Rev Camb Philos Soc ; 94(5): 1786-1808, 2019 10.
Article in English | MEDLINE | ID: mdl-31215138

ABSTRACT

A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well-suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism - emphasizing eco evo devo, and identify current gaps in knowledge.


Subject(s)
Biological Evolution , Developmental Biology , Ecology , Fishes , Adaptation, Biological , Adaptation, Physiological , Animals , Biodiversity , Ecosystem , Environment , Fishes/anatomy & histology , Fishes/classification , Fishes/physiology , Fresh Water , Genetic Speciation , Models, Animal , Phenotype , Polymorphism, Genetic , Selection, Genetic
11.
PLoS One ; 14(4): e0215008, 2019.
Article in English | MEDLINE | ID: mdl-30951561

ABSTRACT

We have generated a high-density, high-throughput genotyping array for characterizing genome-wide variation in Arctic charr (Salvelinus alpinus). Novel single nucleotide polymorphisms (SNPs) were identified in charr from the Fraser, Nauyuk and Tree River aquaculture strains, which originated from northern Canada and fish from Iceland using high coverage sequencing, reduced representation sequencing and RNA-seq datasets. The array was designed to capture genome-wide variation from a diverse suite of Arctic charr populations. Cross validation of SNPs from various sources and comparison with previously published Arctic charr SNP data provided a set of candidate SNPs that generalize across populations. Further candidate SNPs were identified based on minor allele frequency, association with RNA transcripts, even spacing across intergenic regions and association with the sex determining (sdY) gene. The performance of the 86,503 SNP array was assessed by genotyping Fraser, Nauyuk and Tree River strain individuals, as well as wild Icelandic Arctic charr. Overall, 63,060 of the SNPs were polymorphic within at least one group and 36.8% were unique to one of the four groups, suggesting that the array design allows for characterization of both within and across population genetic diversity. The concordance between sdY markers and known phenotypic sex indicated that the array can accurately determine the sex of individuals based on genotype alone. The Salp87k genotyping array provides researchers and breeders the opportunity to analyze genetic variation in Arctic charr at a more detailed level than previously possible.


Subject(s)
DNA, Intergenic/genetics , Genotyping Techniques , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Trout/genetics , Animals , Canada , Female , Male
12.
PLoS One ; 13(9): e0204076, 2018.
Article in English | MEDLINE | ID: mdl-30212580

ABSTRACT

Arctic charr have a circumpolar distribution, persevere under extreme environmental conditions, and reach ages unknown to most other salmonids. The Salvelinus genus is primarily composed of species with genomes that are structured more like the ancestral salmonid genome than most Oncorhynchus and Salmo species of sister genera. It is thought that this aspect of the genome may be important for local adaptation (due to increased recombination) and anadromy (the migration of fish from saltwater to freshwater). In this study, we describe the generation of a new genetic map, the sequencing and assembly of the Arctic charr genome (GenBank accession: GCF_002910315.2) using the newly created genetic map and a previous genetic map, and present several analyses of the Arctic charr genes and genome assembly. The newly generated genetic map consists of 8,574 unique genetic markers and is similar to previous genetic maps with the exception of three major structural differences. The N50, identified BUSCOs, repetitive DNA content, and total size of the Arctic charr assembled genome are all comparable to other assembled salmonid genomes. An analysis to identify orthologous genes revealed that a large number of orthologs could be identified between salmonids and many appear to have highly conserved gene expression profiles between species. Comparing orthologous gene expression profiles may give us a better insight into which genes are more likely to influence species specific phenotypes.


Subject(s)
Genetic Speciation , Genome , Phylogeny , Transcriptome , Trout/genetics , Adaptation, Physiological/genetics , Animals , Arctic Regions , Chromosome Mapping , Cold Temperature , Female , Genetic Linkage , Genetic Markers , Male , Oncorhynchus mykiss/classification , Oncorhynchus mykiss/genetics , Phenotype , Salmo salar/classification , Salmo salar/genetics , Trout/classification
13.
J Evol Biol ; 31(10): 1498-1512, 2018 10.
Article in English | MEDLINE | ID: mdl-29961959

ABSTRACT

Resource polymorphisms exhibit remarkable intraspecific diversity and in many cases are expected to be maintained by diversifying selection. Phenotypic trade-offs can constrain morphologically intermediate individuals from effectively exploiting both alternate resources, resulting in ecological barriers to gene flow. Determining if and how phenotypic trade-offs cause fitness variation in the wild is challenging because of phenotypic and environmental correlations associated with alternative resource strategies. We investigated multiple pathways through which morphology could affect organismal performance, as measured by growth rate, and whether these effects generate diversifying selection in polymorphic Icelandic Arctic charr (Salvelinus alpinus) populations. We considered direct effects of morphology on growth and indirect effects via trophic resource use, estimated by stable isotopic signatures, and via parasitism associated with trophic resources. We sampled over 3 years in (lakes) Thingvallavatn and Vatnshlíðarvatn using the extended selection gradient path analytical approach and estimating size-dependent mortality. We found evidence for diversifying selection only in Thingvallavatn: more streamlined and terminally mouthed planktivore charr experienced greater growth, with the opposite pattern in small benthic charr. However, this effect was mediated by parasitism and nontrophic pathways, rather than trophic performance as often expected. Detection of between-morph differences in the presence (Vatnshlíðarvatn) and direction (Thingvallavatn) of size-dependent mortality, together with nontrophic effects of shape, suggests that a morphological trophic performance explanation for polymorphism is insufficient. This rare insight into selection during early diversification suggests that a complex of interacting local factors must be considered to understand how phenotype influences fitness, despite morphological variation reflecting intuitive trade-off explanations.


Subject(s)
Selection, Genetic , Trout/anatomy & histology , Trout/physiology , Adaptation, Physiological , Animals , Body Size , Diphyllobothrium/isolation & purification , Food Chain , Iceland , Lakes , Mortality , Trout/parasitology
14.
G3 (Bethesda) ; 7(2): 543-556, 2017 02 09.
Article in English | MEDLINE | ID: mdl-27986793

ABSTRACT

Diploidization, which follows whole genome duplication events, does not occur evenly across the genome. In salmonid fishes, certain pairs of homeologous chromosomes preserve tetraploid loci in higher frequencies toward the telomeres due to residual tetrasomic inheritance. Research suggests this occurs only in homeologous pairs where one chromosome arm has undergone a fusion event. We present a linkage map for Arctic charr (Salvelinus alpinus), a salmonid species with relatively fewer chromosome fusions. Genotype by sequencing identified 19,418 SNPs, and a linkage map consisting of 4508 markers was constructed from a subset of high quality SNPs and microsatellite markers that were used to anchor the new map to previous versions. Both male- and female-specific linkage maps contained the expected number of 39 linkage groups. The chromosome type associated with each linkage group was determined, and 10 stable metacentric chromosomes were identified, along with a chromosome polymorphism involving the sex chromosome AC04. Two instances of a weak form of pseudolinkage were detected in the telomeric regions of homeologous chromosome arms in both female and male linkage maps. Chromosome arm homologies within the Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) genomes were determined. Paralogous sequence variants (PSVs) were identified, and their comparative BLASTn hit locations showed that duplicate markers exist in higher numbers on seven pairs of homeologous arms, previously identified as preserving tetrasomy in salmonid species. Homeologous arm pairs where neither arm has been part of a fusion event in Arctic charr had fewer PSVs, suggesting faster diploidization rates in these regions.


Subject(s)
Chromosome Mapping , Evolution, Molecular , Polymorphism, Single Nucleotide/genetics , Salmon/genetics , Animals , Diploidy , Gene Duplication , Genetic Linkage , Genome , Genotype , Microsatellite Repeats/genetics , Oncorhynchus mykiss/genetics
15.
Genome ; 58(9): 393-403, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26360524

ABSTRACT

We tested whether genes differentially expressed between large and small rainbow trout co-localized with familial QTL regions for body size. Eleven chromosomes, known from previous work to house QTL for weight and length in rainbow trout, were examined for QTL in half-sibling families produced in September (1 XY male and 1 XX neomale) and December (1 XY male). In previous studies, we identified 108 candidate genes for growth expressed in the liver and white muscle in a subset of the fish used in this study. These gene sequences were BLASTN aligned against the rainbow trout and stickleback genomes to determine their location (rainbow trout) and inferred location based on synteny with the stickleback genome. Across the progeny of all three males used in the study, 63.9% of the genes with differential expression appear to co-localize with the QTL regions on 6 of the 11 chromosomes tested in these males. Genes that co-localized with QTL in the mixed-sex offspring of the two XY males primarily showed up-regulation in the muscle of large fish and were related to muscle growth, metabolism, and the stress response.


Subject(s)
Oncorhynchus mykiss/growth & development , Oncorhynchus mykiss/genetics , Quantitative Trait Loci , Animals , Body Size/genetics , Chromosome Mapping , Chromosomes , Gene Expression Regulation, Developmental , Genetic Linkage , Genomics/methods , Male , Oncorhynchus mykiss/metabolism , Smegmamorpha/genetics , Synteny/genetics , Up-Regulation
16.
Mar Biotechnol (NY) ; 17(2): 229-43, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25634055

ABSTRACT

All-female lines of fish are created by crossing sex reversed (XX genotype) males with normal females. All-female lines avoid the deleterious phenotypic effects that are typical of precocious maturation in males. To determine whether all-female and mixed sex populations of rainbow trout (Oncorhynchus mykiss) differ in performance, we compared the growth and gene expression profiles in progeny groups produced by crossing a XX male and a XY male to the same five females. Body weight and length were measured in the resulting all-female (XX) and mixed sex (XX/XY) offspring groups. Microarray experiments with liver and white muscle were used to determine if the gene expression profiles of large and small XX offspring differ from those in large and small XX/XY offspring. We detected no significant differences in body length and weight between offspring groups but XX offspring were significantly less variable in the value of these traits. A large number of upregulated genes were shared between the large XX and large XX/XY offspring; the small XX and small XX/XY offspring also shared similar expression profiles. No GO category differences were seen in the liver or between the large XX and large XX/XY offspring in the muscle. The greatest differences between the small XX and small XX/XY offspring were in the genes assigned to the "small molecule metabolic process" and "cellular metabolic process" GO level 3 categories. Similarly, genes within these categories as well as the category "macromolecule metabolic process" were more highly expressed in small compared to large XX fish.


Subject(s)
Breeding/methods , Gene Expression Regulation/physiology , Oncorhynchus mykiss/growth & development , Oncorhynchus mykiss/metabolism , Sex Determination Processes/physiology , Animals , Body Weights and Measures/veterinary , Crosses, Genetic , Female , Gene Expression Profiling/veterinary , Male , Microarray Analysis/veterinary , Sex Determination Processes/genetics
17.
J Exp Biol ; 217(Pt 22): 4029-42, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25278466

ABSTRACT

High-throughput RNA sequencing was used to compare expression profiles in two Arctic charr (Salvelinus alpinus) families post-seawater exposure to identify genes and biological processes involved in hypo-osmoregulation and regulation of salinity tolerance. To further understand the genetic architecture of hypo-osmoregulation, the genomic organization of differentially expressed (DE) genes was also analysed. Using a de novo gill transcriptome assembly we found over 2300 contigs to be DE. Major transporters from the seawater mitochondrion-rich cell (MRC) complex were up-regulated in seawater. Expression ratios for 257 differentially expressed contigs were highly correlated between families, suggesting they are strictly regulated. Based on expression profiles and known molecular pathways we inferred that seawater exposure induced changes in methylation states and elevated peroxynitrite formation in gill. We hypothesized that concomitance between DE immune genes and the transition to a hypo-osmoregulatory state could be related to Cl(-) sequestration by antimicrobial defence mechanisms. Gene ontology analysis revealed that cell division genes were up-regulated, which could reflect the proliferation of ATP1α1b-type seawater MRCs. Comparative genomics analyses suggest that hypo-osmoregulation is influenced by the relative proximities among a contingent of genes on Arctic charr linkage groups AC-4 and AC-12 that exhibit homologous affinities with a region on stickleback chromosome Ga-I. This supports the hypothesis that relative gene location along a chromosome is a property of the genetic architecture of hypo-osmoregulation. Evidence of non-random structure between hypo-osmoregulation candidate genes was found on AC-1/11 and AC-28, suggesting that interchromosomal rearrangements played a role in the evolution of hypo-osmoregulation in Arctic charr.


Subject(s)
Osmoregulation/genetics , Salinity , Trout/genetics , Animals , Base Sequence , Biological Evolution , Gene Expression Profiling , Gene Ontology , Genomics , Molecular Sequence Data , Salt Tolerance , Seawater , Sequence Analysis, RNA , Transcriptome , Trout/metabolism , Water-Electrolyte Balance
18.
Mar Genomics ; 18 Pt A: 31-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25023604

ABSTRACT

We examined associations among embryonic developmental rate (EDR) as measured by hatching time, juvenile body weight (BW) and propensity for precocial sexual maturation (PM) at two years in two sets of diallel crosses of rainbow trout produced in two spawning seasons (September and December) at both the phenotypic and genotypic levels. Dams and sires had highly significant effects on the body weight of their male juvenile progeny on three measurement dates where parental effects remained consistent through time. Dams spawning earlier in the season produced a greater number of mature male progeny (56.7%) than did later spawning females (25.6%). The families from the December lot showed the expected associations among traits in that earlier hatching fish were significantly heavier on all three measurement dates than later hatching fish and were more likely to mature earlier when families were combined. Moreover, earlier maturing fish were significantly heavier on the third measurement date than those that did not mature. In the September lot, mature fish were significantly heavier as juveniles on all three measurement dates than immature fish as predicted but no significant associations were detected between EDR and BW or between PM and EDR. Significant QTL were detected for all three traits but the linkage group location varied depending on the trait and half-sib group analyzed (across dams and sires in each lot). A strong QTL for EDR with genome-wide effects was detected on linkage group RT-8 in all four half-sib analyses. None of the four linkage groups analyzed had QTL for all three traits. However, the phenotypic association between EDR and BW observed in the December lot was supported by the co-localization of QTL to linkage group RT-8 and a positive coupling of allelic effects. RT-8 marker alleles significantly associated with faster EDR were also associated with larger BW and this was observed in numerous families on all three measurement dates. Linkage group RT-24 had weaker QTL for all three traits in the September lot but these were not detected in the same half-sib group simultaneously. At the allelic level, marker alleles for faster EDR were also associated with BW but only at the third measurement date and the progeny of one male. Similarly, RT-30 had weaker QTL for EDR and PM in the December paternal half-sib analysis but no associations were evident at the allelic level. The detection of associations between life history traits and growth at both the phenotypic and genotypic levels has significant implications to aquaculture breeding programs where selection for a desirable trait may lead to unwanted alterations of other traits. Furthermore, the differences between spawning season lots emphasize the complex interaction between environment and genotype on economically important traits and the resulting challenges for aquaculture.


Subject(s)
Alleles , Body Size/genetics , Oncorhynchus mykiss/embryology , Oncorhynchus mykiss/genetics , Quantitative Trait Loci/genetics , Sexual Maturation/genetics , Animals , Body Weight/genetics , Female , Male , Phenotype
19.
Evol Dev ; 16(4): 247-57, 2014.
Article in English | MEDLINE | ID: mdl-24920458

ABSTRACT

The genetic variance that determines phenotypic variation can change across environments through developmental plasticity and in turn play a strong role in evolution. Induced changes in genotype-phenotype relationships should strongly influence adaptation by exposing different sets of heritable variation to selection under some conditions, while also hiding variation. Therefore, the heritable variation exposed or hidden from selection is likely to differ among habitats. We used ecomorphs from two divergent populations of Arctic charr (Salvelinus alpinus) to test the prediction that genotype-phenotype relationships would change in relation to environment. If present over several generations this should lead to divergence in genotype-phenotype relationships under common conditions, and to changes in the amount and type of hidden genetic variance that can evolve. We performed a common garden experiment whereby two ecomorphs from each of two Icelandic lakes were reared under conditions that mimicked benthic and limnetic prey to induce responses in craniofacial traits. Using microsatellite based genetic maps, we subsequently detected QTL related to these craniofacial traits. We found substantial changes in the number and type of QTL between diet treatments and evidence that novel diet treatments can in some cases provide a higher number of QTL. These findings suggest that selection on phenotypic variation, which is both genetically and environmentally determined, has shaped the genetic architecture of adaptive divergence in Arctic charr. However, while adaptive changes are occurring in the genome there also appears to be an accumulation of hidden genetic variation for loci not expressed in the contemporary environment.


Subject(s)
Trout/anatomy & histology , Trout/genetics , Animals , Body Size , Female , Gene-Environment Interaction , Genetic Variation , Male , Quantitative Trait Loci , Skull/anatomy & histology
20.
BMC Genomics ; 15: 57, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24450799

ABSTRACT

BACKGROUND: Growth in fishes is regulated via many environmental and physiological factors and is shaped by the genetic background of each individual. Previous microarray studies of salmonid growth have examined fish experiencing either muscle wastage or accelerated growth patterns following refeeding, or the influence of growth hormone and transgenesis. This study determines the gene expression profiles of genetically unmanipulated large and small fish from a domesticated salmonid strain reared on a typical feeding regime. Gene expression profiles of white muscle and liver from rainbow trout (Oncorhynchus mykiss) from two seasonal spawning groups (September and December lots) within a single strain were examined when the fish were 15 months of age to assess the influence of season (late fall vs. onset of spring) and body size (large vs. small). RESULTS: Although IGFBP1 gene expression was up-regulated in the livers of small fish in both seasonal lots, few expression differences were detected in the liver overall. Faster growing Dec. fish showed a greater number of differences in white muscle expression compared to Sept. fish. Significant differences in the GO Generic Level 3 categories 'response to external stimulus', 'establishment of localization', and 'response to stress' were detected in white muscle tissue between large and small fish. Larger fish showed up-regulation of cytoskeletal component genes while many genes related to myofibril components of muscle tissue were up-regulated in small fish. Most of the genes up-regulated in large fish within the 'response to stress' category are involved in immunity while in small fish most of these gene functions are related to apoptosis. CONCLUSIONS: A higher proportion of genes in white muscle compared to liver showed similar patterns of up- or down-regulation within the same size class across seasons supporting their utility as biomarkers for growth in rainbow trout. Differences between large and small Sept. fish in the 'response to stress' and 'response to external stimulus' categories for white muscle tissue, suggests that smaller fish have a greater inability to handle stress compared to the large fish. Sampling season had a significant impact on the expression of genes related to the growth process in rainbow trout.


Subject(s)
Oncorhynchus mykiss/genetics , Animals , Body Size , Female , Liver/metabolism , Male , Muscles/metabolism , Oncorhynchus mykiss/growth & development , Seasons , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...