Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
SLAS Technol ; 29(2): 100126, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423211

ABSTRACT

High-throughput experimentation (HTE) has become more widely utilized in drug discovery for rapid reaction optimization and generation of large synthetic compound arrays. While this has accelerated medicinal chemistry design, make, test (DMT) iterations, the bottleneck of purification persists, consuming time and resources. Herein we describe a general parallel purification approach based on solid phase extraction (SPE) that provides a more efficient and sustainable workflow producing compound libraries with significantly upgraded purity. This robust, user-friendly workflow is fully automated and integrated with HTE library synthesis, as demonstrated by its application to a diverse parallel library compound array generated via amide-bond coupling in HTE microscale format.


Subject(s)
Amides , Drug Discovery
2.
Science ; 361(6402)2018 08 10.
Article in English | MEDLINE | ID: mdl-29794218

ABSTRACT

Understanding the practical limitations of chemical reactions is critically important for efficiently planning the synthesis of compounds in pharmaceutical, agrochemical, and specialty chemical research and development. However, literature reports of the scope of new reactions are often cursory and biased toward successful results, severely limiting the ability to predict reaction outcomes for untested substrates. We herein illustrate strategies for carrying out large-scale surveys of chemical reactivity by using a material-sparing nanomole-scale automated synthesis platform with greatly expanded synthetic scope combined with ultrahigh-throughput matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS).

3.
Bioorg Med Chem ; 21(22): 7047-63, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24100158

ABSTRACT

Novel small molecule inhibitors of heat shock protein 90 (Hsp90) were discovered with the help of a fragment based drug discovery approach (FBDD) and subsequent optimization with a combination of structure guided design, parallel synthesis and application of medicinal chemistry principles. These efforts led to the identification of compound 18 (NMS-E973), which displayed significant efficacy in a human ovarian A2780 xenograft tumor model, with a mechanism of action confirmed in vivo by typical modulation of known Hsp90 client proteins, and with a favorable pharmacokinetic and safety profile.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Isoxazoles/chemistry , Isoxazoles/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Binding Sites , Biomarkers, Tumor/metabolism , Catalytic Domain , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical , Female , HSP90 Heat-Shock Proteins/metabolism , Humans , Isoxazoles/therapeutic use , Mice , Mice, Inbred BALB C , Mice, Nude , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Protein Binding/drug effects , Structure-Activity Relationship , Transplantation, Heterologous
4.
Bioorg Med Chem ; 21(23): 7364-80, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24139169

ABSTRACT

A novel series of PIM inhibitors was derived from a combined effort in natural product-inspired library generation and screening. The novel pyrrolo[1,2-a]pyrazinones initial hits are inhibitors of PIM isoforms with IC50 values in the low micromolar range. The application of a rational optimization strategy, guided by the determination of the crystal structure of the complex in the kinase domain of PIM1 with compound 1, led to the discovery of compound 15a, which is a potent PIM kinases inhibitor exhibiting excellent selectivity against a large panel of kinases, representative of each family. The synthesis, structure-activity relationship studies, and pharmacokinetic data of compounds from this inhibitor class are presented herein. Furthermore, the cellular activities including inhibition of cell growth and modulation of downstream targets are also described.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrazines/chemistry , Pyrazines/pharmacology , Drug Discovery , Humans , Molecular Docking Simulation , Protein Kinase Inhibitors/chemical synthesis , Protein Structure, Tertiary , Proto-Oncogene Proteins c-pim-1/chemistry , Proto-Oncogene Proteins c-pim-1/metabolism , Pyrazines/chemical synthesis
5.
Bioorg Med Chem Lett ; 20(22): 6489-94, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20932759

ABSTRACT

A series of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives was optimized as Polo-like kinase 1 inhibitors. Extensive SAR afforded a highly potent and selective PLK1 compound. The compound showed good antiproliferative activity when tested in a panel of tumor cell lines with PLK1 related mechanism of action and with good in vivo antitumor efficacy in two xenograft models after i.v. administration.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Quinazolines/chemistry , Quinazolines/pharmacology , Animals , Cell Line, Tumor , Humans , Structure-Activity Relationship , Transplantation, Heterologous , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL