Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Angew Chem Int Ed Engl ; : e202403493, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662909

ABSTRACT

Cyclopropane fatty acid synthases (CFAS) are a class of S-adenosylmethionine (SAM) dependent methyltransferase enzymes able to catalyse the cyclopropanation of unsaturated phospholipids. Since CFAS enzymes employ SAM as a methylene source to cyclopropanate alkene substrates, they have the potential to be mild and more sustainable biocatalysts for cyclopropanation transformations than current carbene based approaches. This work describes the characterisation of E. coli CFAS enzyme (ecCFAS) and its exploitation in the stereoselective biocatalytic synthesis of cyclopropyl lipids.  ecCFAS was found to convert phosphatidylglycerol (PG) to methyl dihydrosterculate 1 from  in up to 58% conversion and 73% ee and the absolute configuration (9S,10R) was established. Substrate tolerance of ecCFAS was found to be correlated with the electronic properties of phospholipid headgroups  and for the first time ecCFAS was found to catalyse cyclopropanation of both phospholipid chains to form dicyclopropanated products. In addition, mutagenesis and in-silico experiments were carried out to identify the enzyme residues with key roles in catalysis and to provide structural insights into the lipid substrate preference of ecCFAS. Finally, the biocatalytic synthesis of methyl dihydrosterculate 1 and its deuterated analogue was also accomplished combining pure ecCFAS with the SAM regenerating AtHMT enzyme in presence of CH3I and CD3I.

2.
ACS Catal ; 13(5): 3370-3378, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36910872

ABSTRACT

The oxidative aromatization of aliphatic N-heterocycles is a fundamental organic transformation for the preparation of a diverse array of heteroaromatic compounds. Despite many attempts to improve the efficiency and practicality of this transformation, most synthetic methodologies still require toxic and expensive reagents as well as harsh conditions. Herein, we describe two enzymatic strategies for the oxidation of 1,2,3,4-tetrahydroquinolines (THQs) and N-cyclopropyl-N-alkylanilines into quinolines and 2-quinolones, respectively. Whole cells and purified monoamine oxidase (MAO-N) enzymes were used to effectively catalyze the biotransformation of THQs into the corresponding aromatic quinoline derivatives, while N-cyclopropyl-N-alkylanilines were converted into 2-quinolone compounds through a horseradish peroxidase (HRP)-catalyzed annulation/aromatization reaction followed by Fe-mediated oxidation.

3.
Article in English | MEDLINE | ID: mdl-36981705

ABSTRACT

Across the world, the interest in point-of-care drug checking as a harm-reduction intervention is growing. This is an attempt to improve intelligence about current drug trends and reduce drug-related morbidity and mortality. In the UK, drug-related harm is increasing exponentially year after year. As such, specialist community treatment services are exploring new methods to improve engagement with people who use drugs (PWUD), who may require support for their problematic drug use. This need has driven the requirement to pilot an on-site, time-responsive, readily available drug-checking service at point-of-support centres. In this study, we piloted the UK's first Home Office-licensed drug-checking service that was embedded into a community substance-misuse service and had all on-site analysis and harm-reduction interventions led and delivered by pharmacists. We report on the laboratory findings from the associated confirmatory analysis (UHPLC-MS, GC-MS, and 1H NMR) to assess the performance of the on-site hand-held Raman spectrometer and outline the challenges of providing real-time analysis of psychoactive substances in a clinical setting. Whilst acknowledging the limitation of the small sample size (n = 13), we demonstrate the potential suitability of using this technology for the purposes of screening substances in community-treatment services. Portability of equipment and timeliness of results are important and only very small samples may be provided by people who use the service. The challenges of accurately identifying substances from complex mixtures were equally found with both point-of-care Raman spectroscopy and laboratory confirmatory-analysis techniques. Further studies are required to confirm these findings.


Subject(s)
Spectrum Analysis, Raman , Substance-Related Disorders , Humans , Pharmacists , Harm Reduction , United Kingdom
4.
Eur J Med Chem ; 246: 114942, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36455356

ABSTRACT

Different viruses belonging to distinct viral families, such as enterovirus 71, rely on the host methyltransferase METTL3 for the completion of fundamental cytoplasmic stages of their life cycle. Modulation of the activity of this enzyme could therefore provide a broad-spectrum approach to interfere with viral infections caused by viruses that depend on its activity for the completion of their viral cycle. With the aim to identify antiviral therapeutics with this effect, a series of new nucleoside analogues was rationally designed to act as inhibitors of human METTL3, as a novel approach to interfere with a range of viral infections. Guided by molecular docking studies on the SAM binding pocket of the enzyme, 24 compounds were prepared following multiple-step synthetic protocols, and evaluated for their ability to interfere with the replication of different viruses in cell-based systems, and to directly inhibit the activity of METTL3. While different molecules displayed moderate inhibition of the human methyltransferase in vitro, multiple novel, potent and selective inhibitors of enterovirus 71 were identified.


Subject(s)
Enterovirus A, Human , Enterovirus , Viruses , Humans , Antiviral Agents/chemistry , Nucleosides/pharmacology , Molecular Docking Simulation , Virus Replication , Methyltransferases/metabolism
5.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36015179

ABSTRACT

A further investigation aiming to generate new potential antitumor agents led us to synthesize a new series of twenty-two compounds characterized by the presence of the 7-(3',4',5'-trimethoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidine pharmacophore modified at its 2-position. Among the synthesized compounds, three were significantly more active than the others. These bore the substituents p-toluidino (3d), p-ethylanilino (3h) and 3',4'-dimethylanilino (3f), and these compounds had IC50 values of 30-43, 160-240 and 67-160 nM, respectively, on HeLa, A549 and HT-29 cancer cells. The p-toluidino derivative 3d was the most potent inhibitor of tubulin polymerization (IC50: 0.45 µM) and strongly inhibited the binding of colchicine to tubulin (72% inhibition), with antiproliferative activity superior to CA-4 against A549 and HeLa cancer cell lines. In vitro investigation showed that compound 3d was able to block treated cells in the G2/M phase of the cell cycle and to induce apoptosis following the intrinsic pathway, further confirmed by mitochondrial depolarization and caspase-9 activation. In vivo experiments conducted on the zebrafish model showed good activity of 3d in reducing the mass of a HeLa cell xenograft. These effects occurred at nontoxic concentrations to the animal, indicating that 3d merits further developmental studies.

6.
Pharmaceutics ; 14(8)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36015257

ABSTRACT

Fungal keratitis, a disease in which the cornea becomes inflamed due to an invasive fungal infection, remains difficult to treat due in part to limited choices of available treatments. Topical eye drops are first-line treatment, but can be ineffective as low levels of drug reach the target site due to precorneal losses and the impenetrability of the cornea. The aim of this study was to determine the corneal delivery of econazole using a novel topical enhancement approach using a composite delivery system based upon cyclodextrins and soft hydrogel contact lenses. Excess econazole nitrate was added to hydroxypropyl-α-cyclodextrin (HP-α-CD) and hydroxypropyl-ß-cyclodextrin (HP-ß-CD) solutions, and the solubility determined using HPLC. Proprietary soft hydrogel contact lenses were then impregnated with saturated solutions and applied to freshly enucleated porcine eyeballs. Econazole nitrate 'eye drops' at the same concentrations served as the control. After 6 h, the corneas were excised and drug-extracted, prior to quantification using HPLC. Molecular dynamic simulations were performed to examine econazole−HP-ß-CD inclusion complexation and dissociation. The minimum inhibitory concentration (MIC) of econazole was determined against four fungal species associated with keratitis, and these data were then related to the amount of drug delivered to the cornea, using an average corneal volume of 0.19 mL. The solubility of econazole increased greatly in the presence of HP-ß-CD and more so with HP-α-CD (p < 0.001), with ratios >> 2. Hydrogel contact lenses delivered ×2.8 more drug across the corneas in comparison to eye drops alone, and ×5 more drug delivered to the cornea when cyclodextrin was present. Molecular graphics demonstrated dynamic econazole release, which would create transient enhanced drug concentration at the cornea surface. The solution-only drops achieved the least satisfactory result, producing sub-MIC levels with factors of ×0.81 for both Fusarium semitectum and Fusarium solani and ×0.40 for both Scolecobasidium tshawytschae and Bipolaris hawaiiensis. All other treatments delivered econazole at > MIC for all four fungal species. The efficacies of the delivery platforms evaluated were ranked: HP-α-CD contact lens > HP-ß-CD contact lens > contact lens = HP-α-CD drops > HP-ß-CD drops > solution-only drops. In summary, the results in this study have demonstrated that a composite drug delivery system based upon econazole−HP-ß-CD inclusion complexes loaded into contact lenses can achieve significantly greater corneal drug delivery with the potential for improved clinical responses.

7.
Pharmaceutics ; 14(6)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35745764

ABSTRACT

Two different series of fifty-two compounds, based on 3',4',5'-trimethoxyaniline (7a-ad) and variably substituted anilines (8a-v) at the 7-position of the 2-substituted-[1,2,4]triazolo [1,5-a]pyrimidine nucleus, had moderate to potent antiproliferative activity against A549, MDA-MB-231, HeLa, HT-29 and Jurkat cancer cell lines. All derivatives with a common 3-phenylpropylamino moiety at the 2-position of the triazolopyrimidine scaffold and different halogen-substituted anilines at its 7-position, corresponding to 4'-fluoroaniline (8q), 4'-fluoro-3'-chloroaniline (8r), 4'-chloroaniline (8s) and 4'-bromoaniline (8u), displayed the greatest antiproliferative activity with mean IC50's of 83, 101, 91 and 83 nM, respectively. These four compounds inhibited tubulin polymerization about 2-fold more potently than combretastatin A-4 (CA-4), and their activities as inhibitors of [3H]colchicine binding to tubulin were similar to that of CA-4. These data underlined that the 3',4',5'-trimethoxyanilino moiety at the 7-position of the [1,2,4]triazolo [1,5-a]pyrimidine system, which characterized compounds 7a-ad, was not essential for maintaining potent antiproliferative and antitubulin activities. Compounds 8q and 8r had high selectivity against cancer cells, and their interaction with tubulin led to the accumulation of HeLa cells in the G2/M phase of the cell cycle and to apoptotic cell death through the mitochondrial pathway. Finally, compound 8q significantly inhibited HeLa cell growth in zebrafish embryos.

8.
Viruses ; 15(1)2022 12 27.
Article in English | MEDLINE | ID: mdl-36680114

ABSTRACT

Human norovirus is the first cause of foodborne disease worldwide, leading to extensive outbreaks of acute gastroenteritis, and causing around 200,000 children to die annually in developing countries. No specific vaccines or antiviral agents are currently available, with therapeutic options limited to supportive care to prevent dehydration. The infection can become severe and lead to life-threatening complications in young children, the elderly and immunocompromised individuals, leading to a clear need for antiviral agents, to be used as treatments and as prophylactic measures in case of outbreaks. Due to the key role played by the viral RNA-dependent RNA polymerase (RdRp) in the virus life cycle, this enzyme is a promising target for antiviral drug discovery. In previous studies, following in silico investigations, we identified different small-molecule inhibitors of this enzyme. In this study, we rationally modified five identified scaffolds, to further explore structure-activity relationships, and to enhance binding to the RdRp. The newly designed compounds were synthesized according to multiple-step synthetic routes and evaluated for their inhibition of the enzyme in vitro. New inhibitors with low micromolar inhibitory activity of the RdRp were identified, which provide a promising basis for further hit-to-lead optimization.


Subject(s)
Antiviral Agents , Enzyme Inhibitors , Norovirus , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Norovirus/drug effects , Norovirus/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors
9.
Eur J Med Chem ; 226: 113823, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34536671

ABSTRACT

Schistosomiasis is a neglected disease of poverty that is caused by infection with blood fluke species contained within the genus Schistosoma. For the last 40 years, control of schistosomiasis in endemic regions has predominantly been facilitated by administration of a single drug, praziquantel. Due to limitations in this mono-chemotherapeutic approach for sustaining schistosomiasis control into the future, alternative anti-schistosomal compounds are increasingly being sought by the drug discovery community. Herein, we describe a multi-pronged, integrated strategy that led to the identification and further exploration of the quinoxaline core as a promising anti-schistosomal scaffold. Firstly, phenotypic screening of commercially available small molecules resulted in the identification of a moderately active hit compound against Schistosoma mansoni (1, EC50 = 4.59 µM on schistosomula). Secondary exploration of the chemical space around compound 1 led to the identification of a quinoxaline-core containing, non-genotoxic lead (compound 22). Compound 22 demonstrated substantially improved activities on both intra-mammalian (EC50 = 0.44 µM, 0.20 µM and 84.7 nM, on schistosomula, juvenile and adult worms, respectively) and intra-molluscan (sporocyst) S. mansoni lifecycle stages. Further medicinal chemistry optimisation of compound 22, resulting in the generation of 20 additional analogues, improved our understanding of the structure-activity relationship and resulted in considerable improvements in both anti-schistosome potency and selectivity (e.g. compound 30; EC50 = 2.59 nM on adult worms; selectivity index compared to the HepG2 cell line = 348). Some derivatives of compound 22 (e.g. 31 and 33) also demonstrated significant activity against the two other medically important species, Schistosoma haematobium and Schistosoma japonicum. Further optimisation of this class of anti-schistosomal is ongoing and could lead to the development of an urgently needed alternative to praziquantel for assisting in schistosomiasis elimination strategies.


Subject(s)
Quinoxalines/pharmacology , Schistosoma haematobium/drug effects , Schistosoma japonicum/drug effects , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Animals , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Quinoxalines/chemical synthesis , Quinoxalines/chemistry , Structure-Activity Relationship
10.
Microorganisms ; 9(9)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34576691

ABSTRACT

Human norovirus is the leading cause of acute gastroenteritis worldwide, affecting every year 685 million people. Norovirus outbreaks are associated with very significant economic losses, with an estimated societal cost of 60 billion USD per year. Despite this, no therapeutic options or vaccines are currently available to treat or prevent this infection. An antiviral therapy that can be used as treatment and as a prophylactic measure in the case of outbreaks is urgently needed. We previously described the computer-aided design and synthesis of novel small-molecule agents able to inhibit the replication of human norovirus in cell-based systems. These compounds are non-nucleoside inhibitors of the viral polymerase and are characterized by a terminal para-substituted phenyl group connected to a central phenyl ring by an amide-thioamide linker, and a terminal thiophene ring. Here we describe new modifications of these scaffolds focused on exploring the role of the substituent at the para position of the terminal phenyl ring and on removing the thioamide portion of the amide-thioamide linker, to further explore structure-activity relationships (SARs) and improve antiviral properties. According to three to four-step synthetic routes, we prepared thirty novel compounds, which were then evaluated against the replication of both murine (MNV) and human (HuNoV) norovirus in cells. Derivatives in which the terminal phenyl group has been replaced by an unsubstituted benzoxazole or indole, and the thioamide component of the amide-thioamide linker has been removed, showed promising results in inhibiting HuNoV replication at low micromolar concentrations. Particularly, compound 28 was found to have an EC50 against HuNoV of 0.9 µM. Although the most active novel derivatives were also associated with an increased cytotoxicity in the human cell line, these compounds represent a very promising starting point for the development of new analogues with reduced cytotoxicity and improved selectivity indexes. In addition, the experimental biological data have been used to create an initial 3D quantitative structure-activity relationship model, which could be used to guide the future design of novel potential anti-norovirus agents.

11.
Bioorg Chem ; 112: 104919, 2021 07.
Article in English | MEDLINE | ID: mdl-33957538

ABSTRACT

Many clinically used agents active in cancer chemotherapy exert their activity through the induction of cell death (apoptosis) by targeting microtubules, altering protein function or inhibiting DNA synthesis. The benzo[b]thiophene scaffold holds a pivotal place as a pharmacophore for the development of anticancer agents, and, in addition, this scaffold has many pharmacological activities. We have developed a flexible method for the construction of a new series of 2-aryl-3-(3,4,5-trimethoxyanilino)-6-methoxybenzo[b]thiophenes as potent antiproliferative agents, giving access to a wide range of substitution patterns at the 2-position of the 6-methoxybenzo[b]thiophene common intermediate. In the present study, all the synthesized compounds retained the 3-(3,4,5-trimethoxyanilino)-6-methoxybenzo[b]thiophene moiety, and the structure-activity relationship was examined by modification of the aryl group at its 2-position with electron-withdrawing (F) or electron-releasing (alkyl and alkoxy) groups. We found that small substituents, such as fluorine or methyl, could be placed in the para-position of the 2-phenyl ring, and these modifications only slightly reduced antiproliferative activity relative to the unsubstituted 2-phenyl analogue. Compounds 3a and 3b, bearing the phenyl and para-fluorophenyl at the 2-position of the 6-methoxybenzo[b]thiophene nucleus, respectively, exhibited the greatest antiproliferative activity among the tested compounds. The treatment of both Caco2 (not metastatic) and HCT-116 (metastatic) colon carcinoma cells with 3a or 3b triggered a significant induction of apoptosis as demonstrated by the increased expression of cleaved-poly(ADP-ribose) polymerase (PARP), receptor-interacting protein (RIP) and caspase-3 proteins. The same effect was not observed with non-transformed colon 841 CoN cells. A potential additional effect during mitosis for 3a in metastatic cells and for 3b in non-metastatic cells was also observed.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Thiophenes/pharmacology , Tubulin Modulators/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Polymerization/drug effects , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
12.
Viruses ; 13(2)2021 02 17.
Article in English | MEDLINE | ID: mdl-33671334

ABSTRACT

MASP-2, mannose-binding protein-associated serine protease 2, is a key enzyme in the lectin pathway of complement activation. Hyperactivation of this protein by human coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2 has been found to contribute to aberrant complement activation in patients, leading to aggravated lung injury with potentially fatal consequences. This hyperactivation is triggered in the lungs through a conserved, direct interaction between MASP-2 and coronavirus nucleocapsid (N) proteins. Blocking this interaction with monoclonal antibodies and interfering directly with the catalytic activity of MASP-2, have been found to alleviate coronavirus-induced lung injury both in vitro and in vivo. In this study, a virtual library of 8736 licensed drugs and clinical agents has been screened in silico according to two parallel strategies. The first strategy aims at identifying direct inhibitors of MASP-2 catalytic activity, while the second strategy focusses on finding protein-protein interaction inhibitors (PPIs) of MASP-2 and coronaviral N proteins. Such agents could represent promising support treatment options to prevent lung injury and reduce mortality rates of infections caused by both present and future-emerging coronaviruses. Forty-six drug repurposing candidates were purchased and, for the ones selected as potential direct inhibitors of MASP-2, a preliminary in vitro assay was conducted to assess their interference with the lectin pathway of complement activation. Some of the tested agents displayed a dose-response inhibitory activity of the lectin pathway, potentially providing the basis for a viable support strategy to prevent the severe complications of coronavirus infections.


Subject(s)
Coronavirus Nucleocapsid Proteins , Enzyme Inhibitors/chemistry , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Protein Binding/drug effects , Coronavirus Infections/drug therapy , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/metabolism , Drug Repositioning , Humans , Structure-Activity Relationship
13.
Eur J Med Chem ; 214: 113229, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33550186

ABSTRACT

Three different series of cis-restricted analogues of combretastatin A-4 (CA-4), corresponding to thirty-nine molecules that contained a pyrrole nucleus interposed between the two aryl rings, were prepared by a palladium-mediated coupling approach and evaluated for their antiproliferative activity against six human cancer cell lines. In the two series of 1,2-diaryl pyrrole derivatives, results suggested that the presence of the 3',4',5'-trimethoxyphenyl moiety at the N-1 position of the pyrrole ring was more favorable for antiproliferative activity. In the series of 3,4-diarylpyrrole analogues, three compounds (11i-k) exhibited maximal antiproliferative activity, showing excellent antiproliferative activity against the CA-4 resistant HT-29 cells. Inhibition of tubulin polymerization of selected 1,2 pyrrole derivatives (9a, 9c, 9o and 10a) was similar to that observed with CA-4, while the isomeric 3,4-pyrrole analogues 11i-k were generally from 1.5- to 2-fold more active than CA-4. Compounds 11j and 11k were the only compounds that showed activity as inhibitors of colchicine binding comparable to that CA-4. Compound 11j had biological properties consistent with its intracellular target being tubulin. This compound was able to block the cell cycle in metaphase and to induce significant apoptosis at a concentration of 25 nM, following the mitochondrial pathway, with low toxicity for normal cells. More importantly, compound 11j exerted activity in vivo superior to that of CA-4P, being able to significantly reduce tumor growth in a syngeneic murine tumor model even at the lower dose tested (5.0 mg/kg).


Subject(s)
Antimitotic Agents/pharmacology , Antineoplastic Agents/pharmacology , Colchicine/antagonists & inhibitors , Drug Discovery , Pyrroles/pharmacology , Tubulin Modulators/pharmacology , Antimitotic Agents/chemical synthesis , Antimitotic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Colchicine/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Polymerization/drug effects , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
14.
PLoS Biol ; 18(11): e3000904, 2020 11.
Article in English | MEDLINE | ID: mdl-33156822

ABSTRACT

There is a great need for antiviral drugs to treat enterovirus (EV) and rhinovirus (RV) infections, which can be severe and occasionally life-threatening. The conserved nonstructural protein 2C, which is an AAA+ ATPase, is a promising target for drug development. Here, we present a structure-activity relationship study of a previously identified compound that targets the 2C protein of EV-A71 and several EV-B species members, but not poliovirus (PV) (EV-C species). This compound is structurally related to the Food and Drug Administration (FDA)-approved drug fluoxetine-which also targets 2C-but has favorable chemical properties. We identified several compounds with increased antiviral potency and broadened activity. Four compounds showed broad-spectrum EV and RV activity and inhibited contemporary strains of emerging EVs of public health concern, including EV-A71, coxsackievirus (CV)-A24v, and EV-D68. Importantly, unlike (S)-fluoxetine, these compounds are no longer neuroactive. By raising resistant EV-A71, CV-B3, and EV-D68 variants against one of these inhibitors, we identified novel 2C resistance mutations. Reverse engineering of these mutations revealed a conserved mechanism of resistance development. Resistant viruses first acquired a mutation in, or adjacent to, the α2 helix of 2C. This mutation disrupted compound binding and provided drug resistance, but this was at the cost of viral fitness. Additional mutations at distantly localized 2C residues were then acquired to increase resistance and/or to compensate for the loss of fitness. Using computational methods to identify solvent accessible tunnels near the α2 helix in the EV-A71 and PV 2C crystal structures, a conserved binding pocket of the inhibitors is proposed.


Subject(s)
Antiviral Agents/pharmacology , Carrier Proteins/drug effects , Enterovirus/drug effects , Viral Nonstructural Proteins/drug effects , Antigens, Viral , Carrier Proteins/metabolism , Drug Discovery/methods , Enterovirus/pathogenicity , Enterovirus Infections/virology , Fluoxetine/pharmacology , HeLa Cells , Humans , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism , Virus Replication
15.
Molecules ; 25(21)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114011

ABSTRACT

Accumulation of misfolded and mistrafficked rhodopsin on the endoplasmic reticulum of photoreceptor cells has a pivotal role in the pathogenesis of retinitis pigmentosa and a subset of Leber's congenital amaurosis. One potential strategy to reduce rhodopsin misfolding and aggregation in these conditions is to use opsin-binding compounds as chemical chaperones for opsin. Such molecules have previously shown the ability to aid rhodopsin folding and proper trafficking to the outer cell membranes of photoreceptors. As means to identify novel chemical chaperones for rhodopsin, a structure-based virtual screening of commercially available drug-like compounds (300,000) was performed on the main binding site of the visual pigment chromophore, the 11-cis-retinal. The best 24 virtual hits were examined for their ability to compete for the chromophore-binding site of opsin. Among these, four small molecules demonstrated the ability to reduce the rate constant for the formation of the 9-cis-retinal-rhodopsin complex, while five molecules surprisingly enhanced the formation of this complex. Compound 7, 13, 20 and 23 showed a weak but detectable increase in the trafficking of the P23H mutant, widely used as a model for both retinitis pigmentosa and Leber's congenital amaurosis, from the ER to the cell membrane. The compounds did not show any relevant cytotoxicity in two different human cell lines, with the only exception of 13. Based on the structures of these active compounds, a series of in silico studies gave important insights on the potential structural features required for a molecule to act either as chemical chaperone or as stabiliser of the 11-cis-retinal-rhodopsin complex. Thus, this study revealed a series of small molecules that represent a solid foundation for the future development of novel therapeutics against these severe inherited blinding diseases.


Subject(s)
Drug Evaluation, Preclinical , Protein Folding , Rhodopsin/chemistry , Rhodopsin/metabolism , Binding, Competitive , Models, Molecular , Protein Binding , Protein Conformation , Thermodynamics
16.
Eur J Med Chem ; 200: 112448, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32417696

ABSTRACT

A new class of inhibitors of tubulin polymerization based on the 2-amino-3-(3',4',5'-trimethoxybenzoyl)benzo[b]furan molecular scaffold was synthesized and evaluated for in vivo and in vitro biological activity. These derivatives were synthesized with different electron-releasing or electron-withdrawing substituents at one of the C-4 through C-7 positions. Methoxy substitution and location on the benzene part of the benzo[b]furan ring played an important role in affecting antiproliferative activity, with the greatest activity occurring with the methoxy group at the C-6 position, the least with the substituent at C-4. The same effect was also observed with ethoxy, methyl or bromine at the C-6 position of the benzo[b]furan skeleton, with the 6-ethoxy-2-amino-3-(3',4',5'-trimethoxybenzoyl)benzo[b]furan derivative 4f as the most promising compound of the series. This compound showed remarkable antiproliferative activity (IC50: 5 pM) against the Daoy medulloblastoma cell line, and 4f was nearly devoid of toxicity on healthy human lymphocytes and astrocytes. The potent antiproliferative activity of 4f was derived from its inhibition of tubulin polymerization by binding to the colchicine site. The compound was also examined for in vivo activity, showing higher potency at 15 mg/kg compared with the reference compound combretastatin A-4 phosphate at 30 mg/kg against a syngeneic murine mammary tumor.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Furans/pharmacology , Tubulin Modulators/pharmacology , Tubulin/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Furans/chemical synthesis , Furans/chemistry , HeLa Cells , Healthy Volunteers , Humans , Molecular Structure , Polymerization/drug effects , Structure-Activity Relationship , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
17.
Molecules ; 25(9)2020 May 06.
Article in English | MEDLINE | ID: mdl-32384805

ABSTRACT

Induction of apoptosis is a common chemotherapeutic mechanism to kill cancer cells The thiazole system has been reported over the past decades as a building block for the preparation of anticancer agents. A novel series of 2-arylalkylamino-4-amino-5-(3',4',5'-trimethoxybenzoyl)-thiazole derivatives designed as dual inhibitors of tubulin and cyclin-dependent kinases (CDKs) were synthesized and evaluated for their antiproliferative activity in vitro against two cancer cell lines and, for selected highly active compounds, for interactions with tubulin and cyclin-dependent kinases and for cell cycle and apoptosis effects. Structure-activity relationships were elucidated for various substituents at the 2-position of the thiazole skeleton. Among the synthesized compounds, the most active analogues were found to be the p-chlorobenzylamino derivative 8e as well as the p-chloro and p-methoxyphenethylamino analogues 8f and 8k, respectively, which inhibited the growth of U-937 and SK-MEL-1 cancer cell lines with IC50 values ranging from 5.7 to 12.2 µM. On U-937 cells, the tested compounds 8f and 8k induced apoptosis in a time and concentration dependent manner. These two latter molecules did not affect tubulin polymerization (IC50 > 20 µM) nor CDK activity at a single concentration of 10 µM, suggesting alternative targets than tubulin and CDK for the compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Cyclin-Dependent Kinases/antagonists & inhibitors , Thiazoles/chemical synthesis , Thiazoles/pharmacology , Tubulin/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Drug Design , Drug Screening Assays, Antitumor , Humans , Microtubules/drug effects , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thiazoles/chemistry , Tubulin/metabolism , Tubulin Modulators/pharmacology
18.
Molecules ; 25(7)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272719

ABSTRACT

Two novel series of compounds based on the 4,5,6,7-tetrahydrothieno[2,3-c]pyridine and 4,5,6,7-tetrahydrobenzo[b]thiophene molecular skeleton, characterized by the presence of a 3',4',5'-trimethoxyanilino moiety and a cyano or an alkoxycarbonyl group at its 2- or 3-position, respectively, were designed, synthesized, and evaluated for antiproliferative activity on a panel of cancer cell lines and for selected highly active compounds, inhibition of tubulin polymerization, and cell cycle effects. We have identified the 2-(3',4',5'-trimethoxyanilino)-3-cyano-6-methoxycarbonyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivative 3a and its 6-ethoxycarbonyl homologue 3b as new antiproliferative agents that inhibit cancer cell growth with IC50 values ranging from 1.1 to 4.7 µM against a panel of three cancer cell lines. Their interaction with tubulin at micromolar levels leads to the accumulation of cells in the G2/M phase of the cell cycle and to an apoptotic cell death. The cell apoptosis study found that compounds 3a and 3b were very effective in the induction of apoptosis in a dose-dependent manner. These two derivatives did not induce cell death in normal human peripheral blood mononuclear cells, suggesting that they may be selective against cancer cells. Molecular docking studies confirmed that the inhibitory activity of these molecules on tubulin polymerization derived from binding to the colchicine site.


Subject(s)
Antineoplastic Agents/chemistry , Biological Products/chemistry , Pyridines/chemistry , Tubulin Modulators/chemistry , Tubulin/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Biological Products/pharmacology , Cell Death/drug effects , Cell Division/drug effects , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Colchicine/chemistry , Drug Screening Assays, Antitumor/methods , G2 Phase/drug effects , HeLa Cells , Humans , K562 Cells , Leukocytes, Mononuclear/drug effects , Mice , Molecular Docking Simulation/methods , Pyridines/pharmacology , Structure-Activity Relationship
19.
Antiviral Res ; 178: 104781, 2020 06.
Article in English | MEDLINE | ID: mdl-32234539

ABSTRACT

Enteroviruses (EV) are a group of positive-strand RNA (+RNA) viruses that include many important human pathogens (e.g. poliovirus, coxsackievirus, echovirus, numbered enteroviruses and rhinoviruses). Fluoxetine was identified in drug repurposing screens as potent inhibitor of enterovirus B and enterovirus D replication. In this paper we are reporting the synthesis and the antiviral effect of a series of fluoxetine analogues. The results obtained offer a preliminary insight into the structure-activity relationship of its chemical scaffold and confirm the importance of the chiral configuration. We identified a racemic fluoxetine analogue, 2b, which showed a similar antiviral activity compared to (S)-fluoxetine. Investigating the stereochemistry of 2b revealed that the S-enantiomer exerts potent antiviral activity and increased the antiviral spectrum compared to the racemic mixture of 2b. In line with the observed antiviral effect, the S-enantiomer displayed a dose-dependent shift in the melting temperature in thermal shift assays, indicative for direct binding to the recombinant 2C protein.


Subject(s)
Antiviral Agents/pharmacology , Carrier Proteins/antagonists & inhibitors , Enterovirus B, Human/drug effects , Enterovirus D, Human/drug effects , Fluoxetine/analogs & derivatives , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Carrier Proteins/metabolism , Cell Line , Cytopathogenic Effect, Viral/drug effects , Enterovirus B, Human/physiology , Enterovirus D, Human/physiology , Fluoxetine/chemistry , Fluoxetine/metabolism , Fluoxetine/pharmacology , HeLa Cells , Humans , Stereoisomerism , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism
20.
Viruses ; 12(3)2020 03 17.
Article in English | MEDLINE | ID: mdl-32191995

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that can cause a debilitating disease that is primarily characterized by persistent joint pain. CHIKV has been emerging globally, while neither a vaccine nor antiviral medication is available. The anti-parasitic drug suramin was previously shown to inhibit CHIKV replication. In this study we aimed to obtain more detailed insight into its mechanism of action. We found that suramin interacts with virions and can inhibit virus binding to cells. It also appeared to inhibit post-attachment steps of the infection process, likely by preventing conformational changes of the envelope glycoproteins required for fusion and the progression of infection. Suramin-resistant CHIKV strains were selected and genotyping and reverse genetics experiments indicated that mutations in E2 were responsible for resistance. The substitutions N5R and H18Q were reverse engineered in the E2 glycoprotein in order to understand their role in resistance. The binding of suramin-resistant viruses with these two E2 mutations was inhibited by suramin like that of wild-type virus, but they appeared to be able to overcome the post-attachment inhibitory effect of suramin. Conversely, a virus with a G82R mutation in E2 (implicated in attenuation of vaccine strain 181/25), which renders it dependent on the interaction with heparan sulfate for entry, was more sensitive to suramin than wild-type virus. Using molecular modelling studies, we predicted the potential suramin binding sites on the mature spikes of the chikungunya virion. We conclude that suramin interferes with CHIKV entry by interacting with the E2 envelope protein, which inhibits attachment and also interferes with conformational changes required for fusion.


Subject(s)
Chikungunya virus/drug effects , Suramin/antagonists & inhibitors , Suramin/pharmacology , Virion/drug effects , Virus Internalization/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , Binding Sites , Chikungunya Fever/virology , Chikungunya virus/genetics , Chlorocebus aethiops , Humans , Models, Molecular , Mutation , Vero Cells , Viral Envelope Proteins/genetics , Virion/metabolism , Virus Attachment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...