Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Methods Cell Biol ; 176: 43-57, 2023.
Article in English | MEDLINE | ID: mdl-37164542

ABSTRACT

Primary cilia are complex organelles, usually singularly located on cell surfaces that are now known to be important for signaling and whose defect is implicated in a category of developmental diseases known as ciliopathies. They are composed of a microtubule axoneme and contain a cilia membrane that is unique and distinct from the plasma membrane. Primary cilia also have their own transport system termed the intraflagellar transport (IFT) system that allows for proteins to be trafficked along the microtubule axoneme in either an anterograde or retrograde manner. Proteins that localize to the primary cilium are referred to as ciliary proteins and have been implicated directly or indirectly in ciliogenesis or ciliary function. It is now recognized that cilia proteins can localize to different compartments of cilia, but can also localize to multiple sites outside of cilia (extraciliary sites). This complexity results in a need for a better understanding of ciliary protein fixation and immunolabeling protocols, as different methods are required to visualize different cilia proteins and reveal novel or unique localizations. Here, we detail a variety of fixation methods and their effects on ciliary protein immunolabeling.


Subject(s)
Cilia , Proteins , Cilia/metabolism , Biological Transport , Microtubules/metabolism , Cell Membrane/metabolism
2.
FASEB J ; 35(10): e21869, 2021 10.
Article in English | MEDLINE | ID: mdl-34469026

ABSTRACT

The leucine-rich repeat-containing family 8 member A (LRRC8A) is an essential subunit of the volume-regulated anion channel (VRAC). VRAC is critical for cell volume control, but its broader physiological functions remain under investigation. Recent studies in the field indicate that Lrrc8a disruption in the brain astrocytes reduces neuronal excitability, impairs synaptic plasticity and memory, and protects against cerebral ischemia. In the present work, we generated brain-wide conditional LRRC8A knockout mice (LRRC8A bKO) using NestinCre -driven Lrrc8aflox/flox excision in neurons, astrocytes, and oligodendroglia. LRRC8A bKO animals were born close to the expected Mendelian ratio and developed without overt histological abnormalities, but, surprisingly, all died between 5 and 9 weeks of age with a seizure phenotype, which was confirmed by video and EEG recordings. Brain slice electrophysiology detected changes in the excitability of pyramidal cells and modified GABAergic inputs in the hippocampal CA1 region of LRRC8A bKO. LRRC8A-null hippocampi showed increased immunoreactivity of the astrocytic marker GFAP, indicating reactive astrogliosis. We also found decreased whole-brain protein levels of the GABA transporter GAT-1, the glutamate transporter GLT-1, and the astrocytic enzyme glutamine synthetase. Complementary HPLC assays identified reduction in the tissue levels of the glutamate and GABA precursor glutamine. Together, these findings suggest that VRAC provides vital control of brain excitability in mouse adolescence. VRAC deletion leads to a lethal phenotype involving progressive astrogliosis and dysregulation of astrocytic uptake and supply of amino acid neurotransmitters and their precursors.


Subject(s)
Astrocytes/pathology , Gliosis/mortality , Glutamic Acid/metabolism , Membrane Proteins/physiology , Seizures/mortality , Animals , Astrocytes/metabolism , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , Female , Gliosis/etiology , Gliosis/pathology , Ion Transport , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Seizures/etiology , Seizures/pathology
3.
J Neurosci ; 41(17): 3932-3943, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33741721

ABSTRACT

The Abelson-helper integration site 1 (AHI1) gene encodes for a ciliary transition zone localizing protein that when mutated causes the human ciliopathy, Joubert syndrome. We prepared and examined neuronal cultures derived from male and female embryonic Ahi1+/+ and Ahi1-/- mice (littermates) and found that the distribution of ciliary melanin-concentrating hormone receptor-1 (MchR1) was significantly reduced in Ahi1-/- neurons; however, the total and surface expression of MchR1 on Ahi1-/- neurons was similar to controls (Ahi1+/+). This indicates that a pathway for MchR1 trafficking to the surface plasma membrane is intact, but the process of targeting MchR1 into cilia is impaired in Ahi1-deficient mouse neurons, indicating a role for Ahi1 in localizing MchR1 to the cilium. Mouse Ahi1-/- neurons that fail to accumulate MchR1 in the ciliary membrane have significant decreases in two downstream MchR1 signaling pathways [cAMP and extracellular signal-regulated kinase (Erk)] on MCH stimulation. These results suggest that the ciliary localization of MchR1 is necessary and critical for MchR1 signaling, with Ahi1 participating in regulating MchR1 localization to cilia, and further supporting cilia as critical signaling centers in neurons.SIGNIFICANCE STATEMENT Our work here demonstrates that neuronal primary cilia are powerful and focused signaling centers for the G-protein-coupled receptor (GPCR), melanin-concentrating hormone receptor-1 (MCHR1), with a role for the ciliary transition zone protein, Abelson-helper integration site 1 (AHI1), in mediating ciliary trafficking of MCHR1. Moreover, our manuscript further expands the repertoire of cilia functions on neurons, a cell type that has not received significant attention in the cilia field. Lastly, our work demonstrates the significant influence of ciliary GPCR signaling in the overall signaling of neurons.


Subject(s)
Adaptor Proteins, Vesicular Transport/physiology , Cilia/physiology , Neurons/physiology , Receptors, Somatostatin/physiology , Signal Transduction/physiology , Abnormalities, Multiple/genetics , Abnormalities, Multiple/physiopathology , Adaptor Proteins, Vesicular Transport/genetics , Animals , Cell Membrane/physiology , Cerebellum/abnormalities , Cerebellum/physiopathology , Cyclic AMP/metabolism , Eye Abnormalities/genetics , Eye Abnormalities/physiopathology , Female , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/physiopathology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/physiology , Mice , Mice, Knockout , Pregnancy , Receptors, Somatostatin/genetics , Retina/abnormalities , Retina/physiopathology , Signal Transduction/genetics
4.
J Neurosci Methods ; 331: 108529, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31760060

ABSTRACT

BACKGROUND: Sholl analysis has been used to analyze neuronal morphometry and dendritic branching and complexity for many years. While the process has become semi-automated in recent years, existing software packages are still dependent on user tracing and hence are subject to observer bias, variability, and increased user times for analyses. Commercial software packages have the same issues as they also rely on user tracing. In addition, these packages are also expensive and require extensive user training. NEW METHOD: To address these issues, we have developed a broadly applicable, no-cost ImageJ plugin, we call AutoSholl, to perform Sholl analysis on pre-processed and 'thresholded' images. This algorithm extends the already existing plugin in Fiji ImageJ for Sholl analysis by allowing for secondary analysis techniques, such as determining number and length of root, intermediate, and terminal dendrites; functions not currently supported in the existing Sholl Analysis plugin in Fiji ImageJ. RESULTS: The algorithm allows for rapid Sholl analysis in both 2-dimensional and 3-dimensional data sets independent of user tracing. COMPARISON WITH EXISTING METHODS: We validated the performance of AutoSholl against pre-existing software packages using trained human observers and images of neurons. We found that our algorithm outputs similar results as available software (i.e., Bonfire), but allows for faster analysis times and unbiased quantification. CONCLUSIONS: As such, AutoSholl allows inexperienced observers to output results like more trained observers efficiently, thereby increasing the consistency, speed, and reliability of Sholl analyses.


Subject(s)
Neurons , Software , Algorithms , Automation , Humans , Image Processing, Computer-Assisted , Reproducibility of Results
5.
J Cell Sci ; 132(17)2019 09 04.
Article in English | MEDLINE | ID: mdl-31391239

ABSTRACT

Mutations in the Abelson-helper integration site 1 (AHI1) gene are associated with neurological/neuropsychiatric disorders, and cause the neurodevelopmental ciliopathy Joubert syndrome (JBTS). Here, we show that deletion of the transition zone (TZ) protein Ahi1 in mouse embryonic fibroblasts (MEFs) has a small effect on cilia formation. However, Ahi1 loss in these cells results in: (1) reduced localization of the JBTS-associated protein Arl13b to the ciliary membrane, (2) decreased sonic hedgehog signaling, (3) and an abnormally elongated ciliary axoneme accompanied by an increase in ciliary IFT88 concentrations. While no changes in Arl13b levels are detected in crude cell membrane extracts, loss of Ahi1 significantly reduced the level of non-membrane-associated Arl13b and its stability via the proteasome pathway. Exogenous expression of Ahi1-GFP in Ahi1-/- MEFs restored ciliary length, increased ciliary recruitment of Arl13b and augmented Arl13b stability. Finally, Ahi1-/- MEFs displayed defects in cell motility and Pdgfr-α-dependent migration. Overall, our findings support molecular mechanisms underlying JBTS etiology that involve: (1) disruptions at the TZ resulting in defects of membrane- and non-membrane-associated proteins to localize to primary cilia, and (2) defective cell migration.This article has an associated First Person interview with the first author of the paper.


Subject(s)
ADP-Ribosylation Factors/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Cilia/metabolism , ADP-Ribosylation Factors/genetics , Adaptor Proteins, Vesicular Transport/genetics , Animals , Cell Movement/physiology , Fibroblasts/metabolism , Mice , Mice, Knockout , Mutation , Protein Transport , Signal Transduction
6.
Dev Biol ; 448(1): 36-47, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30695685

ABSTRACT

Joubert syndrome (JBTS) is a predominantly autosomal recessive neurodevelopmental disorder that presents with characteristic malformations of the cerebellar vermis, superior cerebellar peduncles and midbrain in humans. Accompanying these malformations are a heterogeneous set of clinical symptoms, which frequently include deficits in motor and muscle function, such as hypotonia (low muscle tone) and ataxia (clumsiness). These symptoms are attributed to improper development of the hindbrain, but no direct evidence has been reported linking these in JBTS. Here, we describe muscle developmental defects in a mouse with a targeted deletion of the Abelson helper integration site 1 gene, Ahi1, one of the genes known to cause JBTS in humans. While FVB/NJ Ahi1-/- mice display no gross malformations of the cerebellum, deficits are observed in several measures of motor function, strength, and body development. Specifically, Ahi1-/- mice show delayed physical development, delays in surface reflex righting as neonates, and reductions in grip strength and spontaneous locomotor activity as adults. Additionally, Ahi1-/- mice showed evidence of muscle-specific contributions to this phenotype, such as reductions in 1) myoblast differentiation potential in vitro, 2) muscle desmin expression, and 3) overall muscle mass, myonuclear domain, and muscle fiber cross-sectional area. Together, these data suggest that loss of Ahi1 may cause abnormalities in the differentiation of myoblasts to mature muscle cells. Moreover, Ahi1 loss impacts muscle development directly, outside of any indirect impact of cerebellar malformations, revealing a novel myogenic cause for hypotonia in JBTS.


Subject(s)
Abnormalities, Multiple/embryology , Cell Differentiation , Cerebellum/abnormalities , Eye Abnormalities/embryology , Kidney Diseases, Cystic/embryology , Muscle Development , Neurodevelopmental Disorders/metabolism , Proto-Oncogene Proteins/deficiency , Retina/abnormalities , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Adaptor Proteins, Vesicular Transport , Animals , Cerebellum/embryology , Cerebellum/pathology , Desmin/genetics , Desmin/metabolism , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Locomotion/genetics , Mice , Mice, Knockout , Muscle Strength/genetics , Myoblasts/metabolism , Myoblasts/pathology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Proto-Oncogene Proteins/metabolism , Reflex, Righting/genetics , Retina/embryology , Retina/pathology
7.
Bioessays ; 40(8): e1700132, 2018 08.
Article in English | MEDLINE | ID: mdl-29882973

ABSTRACT

Once dismissed as vestigial organelles, primary cilia have garnered the interest of scientists, given their importance in development/signaling, and for their implication in a new disease category known as ciliopathies. However, many, if not all, "cilia" proteins also have locations/functions outside of the primary cilium. These extraciliary functions can complicate the interpretation of a particular ciliopathy phenotype: it may be a result of defects at the cilium and/or at extraciliary locations, and it could be broadly related to a unifying cellular process for these proteins, such as polarity. Assembly of a cilium has many similarities to the development of other polarized structures. This evolutionarily preserved process for the assembly of polarized cell structures offers a perspective on how the cilium may have evolved. We hypothesize that cilia proteins are critical for cell polarity, and that core polarity proteins may have been specialized to form various cellular protrusions, including primary cilia.


Subject(s)
Cell Polarity/physiology , Cilia/metabolism , Cilia/pathology , Ciliopathies/pathology , Proteins/metabolism , Animals , Biological Evolution , Centrosome/metabolism , Ciliopathies/etiology , Cytoskeleton/metabolism , Dendrites/metabolism , Humans , Neurites/physiology , Phosphatidylinositols/metabolism , Signal Transduction
8.
Neurol Neuroimmunol Neuroinflamm ; 5(1): e414, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29379820

ABSTRACT

OBJECTIVE: To study the influence of the Abelson helper integration site 1 (AHI1) locus associated with MS susceptibility on CD4+ T cell function. METHODS: We characterized the chromatin state of T cells in the MS-associated AHI1 linkage disequilibrium (LD) block. The expression and the role of the AHI1 variant were examined in T cells from genotyped healthy subjects who were recruited from the PhenoGenetic Project, and the function of AHI1 was explored using T cells from Ahi1 knockout mice. RESULTS: Chromatin state analysis reveals that the LD block containing rs4896153, which is robustly associated with MS susceptibility (odds ratio 1.15, p = 1.65 × 10-13), overlaps with strong enhancer regions that are present in human naive and memory CD4+ T cells. Relative to the rs4896153A protective allele, the rs4896153T susceptibility allele is associated with decreased AHI1 mRNA expression, specifically in naive CD4+ T cells (p = 1.73 × 10-74, n = 213), and we replicate this effect in an independent set of subjects (p = 2.5 × 10-9, n = 32). Functional studies then showed that the rs4896153T risk variant and the subsequent decreased AHI1 expression were associated with reduced CD4+ T cell proliferation and a specific differentiation into interferon gamma (IFNγ)-positive T cells when compared with the protective rs4896153A allele. This T cell phenotype was also observed in murine CD4+ T cells with genetic deletion of Ahi1. CONCLUSIONS: Our findings suggest that the effect of the AHI1 genetic risk for MS is mediated, in part, by enhancing the development of proinflammatory IFNγ+ T cells that have previously been implicated in MS and its mouse models.

9.
Cell Mol Life Sci ; 75(9): 1521-1540, 2018 May.
Article in English | MEDLINE | ID: mdl-29305615

ABSTRACT

Primary cilia are immotile organelles known for their roles in development and cell signaling. Defects in primary cilia result in a range of disorders named ciliopathies. Because this organelle can be found singularly on almost all cell types, its importance extends to most organ systems. As such, elucidating the importance of the primary cilium has attracted researchers from all biological disciplines. As the primary cilia field expands, caution is warranted in attributing biological defects solely to the function of this organelle, since many of these "ciliary" proteins are found at other sites in cells and likely have non-ciliary functions. Indeed, many, if not all, cilia proteins have locations and functions outside the primary cilium. Extraciliary functions are known to include cell cycle regulation, cytoskeletal regulation, and trafficking. Cilia proteins have been observed in the nucleus, at the Golgi apparatus, and even in immune synapses of T cells (interestingly, a non-ciliated cell). Given the abundance of extraciliary sites and functions, it can be difficult to definitively attribute an observed phenotype solely to defective cilia rather than to some defective extraciliary function or a combination of both. Thus, extraciliary sites and functions of cilia proteins need to be considered, as well as experimentally determined. Through such consideration, we will understand the true role of the primary cilium in disease as compared to other cellular processes' influences in mediating disease (or through a combination of both). Here, we review a compilation of known extraciliary sites and functions of "cilia" proteins as a means to demonstrate the potential non-ciliary roles for these proteins.


Subject(s)
Cilia/metabolism , Proteins/metabolism , Animals , Cell Movement/physiology , Humans , Phenotype , Signal Transduction/physiology
10.
J Neurosci Methods ; 294: 1-6, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29061345

ABSTRACT

BACKGROUND: Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology. NEW METHOD: To address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call 'BranchAnalysis2D/3D', to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia. RESULTS: Our BranchAnalysis2D/3D algorithm allows for rapid quantification of the length and thickness of branching morphologies, independent of user tracing, in both 2D and 3D data sets. COMPARISON WITH EXISTING METHODS: We validated the performance of BranchAnalysis2D/3D against pre-existing software packages using trained human observers and images from brain and retina. We found that the BranchAnalysis2D/3D algorithm outputs results similar to available software (i.e., Metamorph, AngioTool, Neurolucida), while allowing faster analysis times and unbiased quantification. CONCLUSIONS: BranchAnalysis2D/3D allows inexperienced observers to output results like a trained observer but more efficiently, thereby increasing the consistency, speed, and reliability of morphometric analyses.


Subject(s)
Brain/cytology , Imaging, Three-Dimensional/methods , Microscopy, Confocal/methods , Neurons/cytology , Software , Algorithms , Animals , Mice , Observer Variation , Reproducibility of Results , Retina/anatomy & histology
11.
Epilepsia Open ; 2(1): 48-58, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28825051

ABSTRACT

OBJECTIVE: C57BL/6J mice exposed to eight flurothyl-induced generalized clonic seizures exhibit a change in seizure phenotype following a 28-day incubation period and subsequent flurothyl rechallenge. Mice now develop a complex seizure semiology originating in the forebrain and propagating into the brainstem seizure network (a forebrain→brainstem seizure). In contrast, this phenotype change does not occur in seizure-sensitive DBA/2J mice. The underlying mechanism(s) was the focus of these studies. METHODS: DBA2/J mice were exposed to eight flurothyl-induced seizures (1/day) followed by 24-hour video-electroencephalographic recordings for 28-days. Forebrain and brainstem seizure thresholds were determined in C57BL/6J and DBA/2J mice following one or eight flurothyl-induced seizures, or after eight flurothyl-induced seizures, a 28-day incubation period, and final flurothyl rechallenge. RESULTS: Similar to C57BL/6J mice, DBA2/J mice expressed spontaneous seizures. However, unlike C57BL/6J mice, DBA2/J mice continued to have spontaneous seizures without remission. Because DBA2/J mice do not express forebrain→brainstem seizures following flurothyl rechallenge after a 28-day incubation period, this indicated that spontaneous seizures were not sufficient for the evolution of forebrain→brainstem seizures. Therefore, we determined whether brainstem seizure thresholds were changing during this repeated-flurothyl model and whether this could account for the expression of forebrain→brainstem seizures. Brainstem seizure thresholds were not different between C57BL/6J and DBA/2J mice on day one or on the last induction seizure trial (day eight). However, brainstem seizure thresholds did differ significantly on flurothyl rechallenge (day 28) with DBA/2J mice showing no lowering of their brainstem seizure thresholds. SIGNIFICANCE: These results demonstrated that DBA/2J mice exposed to the repeated-flurothyl model develop spontaneous seizures without evidence of seizure remission and provide a new model of epileptogenesis. Moreover, these findings indicated that the transition of forebrain ictal discharge into the brainstem seizure network occurs due to changes in brainstem seizure thresholds that are independent of spontaneous seizure expression.

12.
Bio Protoc ; 7(11)2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28748202

ABSTRACT

Development of spontaneous seizures is the hallmark of human epilepsy. There is a critical need for new epilepsy models in order to elucidate mechanisms responsible for leading to the development of spontaneous seizures and for testing new anti-epileptic compounds. Moreover, rodent models of epilepsy have clearly demonstrated that there are two independent seizure systems in the brain: 1) the forebrain seizure network required for the expression of clonic seizures mediated by forebrain neurocircuitry, and 2) the brainstem seizure network necessary for the expression of brainstem or tonic seizures mediated by brainstem neurocircuitry. In seizure naïve animals, these two systems are separate, but developing models that can explore the intersection of the forebrain and brainstem seizure systems or for elucidating mechanisms responsible for bringing these two seizure systems together may aid in our understanding of: 1) how seizures can become more complex overtime, and 2) sudden unexpected death in epilepsy (SUDEP) since propagation of seizure discharge from the forebrain seizure system to the brainstem seizure system may have an important role in SUDEP because many cardiorespiratory systems are localized in the brainstem. The repeated flurothyl seizure model of epileptogenesis, as described here, may aid in providing insight into these important epilepsy issues in addition to understanding how spontaneous seizures develop.

13.
G3 (Bethesda) ; 7(8): 2545-2558, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28620084

ABSTRACT

Epilepsy has many causes and comorbidities affecting as many as 4% of people in their lifetime. Both idiopathic and symptomatic epilepsies are highly heritable, but genetic factors are difficult to characterize among humans due to complex disease etiologies. Rodent genetic studies have been critical to the discovery of seizure susceptibility loci, including Kcnj10 mutations identified in both mouse and human cohorts. However, genetic analyses of epilepsy phenotypes in mice to date have been carried out as acute studies in seizure-naive animals or in Mendelian models of epilepsy, while humans with epilepsy have a history of recurrent seizures that also modify brain physiology. We have applied a repeated seizure model to a genetic reference population, following seizure susceptibility over a 36-d period. Initial differences in generalized seizure threshold among the Hybrid Mouse Diversity Panel (HMDP) were associated with a well-characterized seizure susceptibility locus found in mice: Seizure susceptibility 1 Remarkably, Szs1 influence diminished as subsequent induced seizures had diminishing latencies in certain HMDP strains. Administration of eight seizures, followed by an incubation period and an induced retest seizure, revealed novel associations within the calmodulin-binding transcription activator 1, Camta1 Using systems genetics, we have identified four candidate genes that are differentially expressed between seizure-sensitive and -resistant strains close to our novel Epileptogenesis susceptibility factor 1 (Esf1) locus that may act individually or as a coordinated response to the neuronal stress of seizures.


Subject(s)
Epilepsy/genetics , Genetic Loci , Genetic Predisposition to Disease , Genetic Variation , Seizures/genetics , Alleles , Animals , Brain/metabolism , Brain/pathology , Chromosomes, Mammalian/genetics , Crosses, Genetic , Disease Models, Animal , Epistasis, Genetic , Female , Flurothyl , Genome-Wide Association Study , Kindling, Neurologic/genetics , Male , Mice , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Regression Analysis
14.
Epilepsy Behav ; 73: 214-235, 2017 08.
Article in English | MEDLINE | ID: mdl-28651171

ABSTRACT

It is becoming increasingly clear that the genetic background of mice and rats, even in inbred strains, can have a profound influence on measures of seizure susceptibility and epilepsy. These differences can be capitalized upon through genetic mapping studies to reveal genes important for seizures and epilepsy. However, strain background and particularly mixed genetic backgrounds of transgenic animals need careful consideration in both the selection of strains and in the interpretation of results and conclusions. For instance, mice with targeted deletions of genes involved in epilepsy can have profoundly disparate phenotypes depending on the background strain. In this review, we discuss findings related to how this genetic heterogeneity has and can be utilized in the epilepsy field to reveal novel insights into seizures and epilepsy. Moreover, we discuss how caution is needed in regards to rodent strain or even animal vendor choice, and how this can significantly influence seizure and epilepsy parameters in unexpected ways. This is particularly critical in decisions regarding the strain of choice used in generating mice with targeted deletions of genes. Finally, we discuss the role of environment (at vendor and/or laboratory) and epigenetic factors for inter- and intrastrain differences and how such differences can affect the expression of seizures and the animals' performance in behavioral tests that often accompany acute and chronic seizure testing.


Subject(s)
Disease Models, Animal , Epilepsy/genetics , Seizures/genetics , Animals , Male , Mice , Rats , Species Specificity
15.
Cilia ; 6: 5, 2017.
Article in English | MEDLINE | ID: mdl-28352462

ABSTRACT

BACKGROUND: Primary cilia are immotile, microtubule-based organelles present on most cells. Defects in primary cilia presence/function result in a category of developmental diseases referred to as ciliopathies. As the cilia field progresses, there is a need to consider both the ciliary and extraciliary roles of cilia proteins. However, traditional fixation methods are not always suitable for examining the full range of localizations of cilia proteins. Here, we tested a variety of fixation methods with commonly used cilia markers to determine the most appropriate fixation method for different cilia proteins. METHODS: Mouse inner medullary collecting duct and human retinal pigmented epithelial cells were grown to confluence, serum starved, and fixed with one of the following fixation agents: paraformaldehyde-sucrose, paraformaldehyde-PBS, methanol, cytoskeletal buffer followed by methanol, or three variations of cytoskeletal buffer-paraformaldehyde fixation. Each cell type and fixation method combination was probed with the following ciliary markers: acetylated α-tubulin, detyrosinated tubulin, polyglutamylated tubulin, ß-tubulin, adenylyl cyclase 3 (AC3), ADP-ribosylation factor-like protein 13b (Arl13b), centrosome and spindle pole associated protein 1 (CSPP1), or intraflagellar transport protein 20 (IFT20). Intraflagellar transport protein 88 (IFT88) and GM130 (Golgi marker) were also used. We assessed actin (via phalloidin) and microtubule integrity, centrioles, cilia, and two extraciliary sites (mitotic figures and Golgi). RESULTS: For the cilia markers examined, paraformaldehyde fixation preserved cilia immunolabeling of cilia-membrane proteins (AC3 and Arl13b), but failed to reveal cilia immunostaining of axonemal proteins (CSPP1 and IFT20). Methanol revealed cilia labeling for some axonemal proteins, but not others, and this depended on cell type. Generally, any method that first included a wash in cytoskeletal buffer, before fixing, revealed more distinct cilia immunolabeling for axonemal proteins (CSPP1, IFT20, and IFT88), but resulted in the loss of cilia labeling for cilia-membrane proteins (AC3 and Arl13b). All three different post-translational modifications of tubulin antibodies positively immunolabeled cilia in all fixation methods tested. Ultimately, we found that fixing cells in a solution of paraformaldehyde prepared in cytoskeletal buffer allowed for the preservation of cilia immunolabeling for most cilia proteins tested and allowed visualization of two extraciliary sites (mitotic figures and Golgi). CONCLUSION: Some general patterns were observed to guide in the choice of a fixation agent. Cilia-membrane proteins generally benefit from quick fixation with no prior permeabilization, whereas axonemal proteins tend to benefit from permeabilization and use of cytoskeletal buffer.

16.
J Neurosci ; 36(28): 7485-96, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27413158

ABSTRACT

UNLABELLED: The occurrence of recurrent, unprovoked seizures is the hallmark of human epilepsy. Currently, only two-thirds of this patient population has adequate seizure control. New epilepsy models provide the potential for not only understanding the development of spontaneous seizures, but also for testing new strategies to treat this disorder. Here, we characterize a primary generalized seizure model of epilepsy following repeated exposure to the GABAA receptor antagonist, flurothyl, in which mice develop spontaneous seizures that remit within 1 month. In this model, we expose C57BL/6J mice to flurothyl until they experience a generalized seizure. Each of these generalized seizures typically lasts <30 s. We induce one seizure per day for 8 d followed by 24 h video-electroencephalographic recordings. Within 1 d following the last of eight flurothyl-induced seizures, ∼50% of mice have spontaneous seizures. Ninety-five percent of mice tested have seizures within the first week of the recording period. Of the spontaneous seizures recorded, the majority are generalized clonic seizures, with the remaining 7-12% comprising generalized clonic seizures that transition into brainstem seizures. Over the course of an 8 week recording period, spontaneous seizure episodes remit after ∼4 weeks. Overall, the repeated flurothyl paradigm is a model of epileptogenesis with spontaneous seizures that remit. This model provides an additional tool in our armamentarium for understanding the mechanisms underlying epileptogenesis and may provide insights into why spontaneous seizures remit without anticonvulsant treatment. Elucidating these processes could lead to the development of new epilepsy therapeutics. SIGNIFICANCE STATEMENT: Epilepsy is a chronic disorder characterized by the occurrence of recurrent, unprovoked seizures in which the individual seizure-ictal events are self-limiting. Remission of recurrent, unprovoked seizures can be achieved in two-thirds of cases by treatment with anticonvulsant medication, surgical resection, and/or nerve/brain electrode stimulation. However, there are examples in humans of epilepsy with recurrent, unprovoked seizures remitting without any intervention. While elucidating how recurrent, unprovoked seizures develop is critical for understanding epileptogenesis, an understanding of how and why recurrent, unprovoked seizures remit may further our understanding and treatment of epilepsy. Here, we describe a new model of recurrent, unprovoked spontaneous seizures in which the occurrence of spontaneous seizures naturally remits over time without any therapeutic intervention.


Subject(s)
Convulsants/toxicity , Flurothyl/toxicity , Seizures/chemically induced , Analysis of Variance , Animals , Anticonvulsants/therapeutic use , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Electroencephalography , Fluoresceins/metabolism , Hippocampus/drug effects , Male , Mice , Mice, Inbred C57BL , Seizures/drug therapy , Seizures/pathology , Time Factors , Video Recording
17.
Epilepsy Res ; 109: 183-96, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25524858

ABSTRACT

Significant differences in seizure characteristics between inbred mouse strains highlight the importance of genetic predisposition to epilepsy. Here, we examined the genetic differences between the seizure-resistant C57BL/6J (B6) mouse strain and the seizure-susceptible DBA/2J (D2) strain in the phospho-Erk and Fos pathways to examine seizure-induced neuronal activity to uncover potential mechanistic correlates to these disparate seizure responsivities. Expression of neural activity markers was examined following 1, 5, or 8 seizures, or after 8 seizures, a 28 day rest period, and a final flurothyl rechallenge. Two brain regions, the hippocampus and ventromedial nucleus of the hypothalamus (VMH), had significantly different Fos expression profiles following seizures. Fos expression was highly robust in B6 hippocampus following one seizure and remained elevated following multiple seizures. Conversely, there was an absence of Fos (and phospho-Erk) expression in D2 hippocampus following one generalized seizure that increased with multiple seizures. This lack of Fos expression occurred despite intracranial electroencephalographic recordings indicating that the D2 hippocampus propagated ictal discharge during the first flurothyl seizure suggesting a dissociation of seizure discharge from Fos and phospho-Erk expression. Global transcriptional analysis confirmed a dysregulation of the c-fos pathway in D2 mice following 1 seizure. Moreover, global analysis of RNA expression differences between B6 and D2 hippocampus revealed a unique pattern of transcripts that were co-regulated with Fos in D2 hippocampus following 1 seizure. These expression differences could, in part, account for D2's seizure susceptibility phenotype. Following 8 seizures, a 28 day rest period, and a final flurothyl rechallenge, ∼85% of B6 mice develop a more complex seizure phenotype consisting of a clonic-forebrain seizure that uninterruptedly progresses into a brainstem seizure. This seizure phenotype in B6 mice is highly correlated with bilateral Fos expression in the VMH and was not observed in D2 mice, which always express clonic-forebrain seizures upon flurothyl retest. Overall, these results illustrate specific differences in protein and RNA expression in different inbred strains following seizures that precede the reorganizational events that affect seizure susceptibility and changes in seizure semiology over time.


Subject(s)
Hippocampus/physiopathology , Proto-Oncogene Proteins c-fos/metabolism , Seizures/physiopathology , Animals , Blotting, Western , Disease Models, Animal , Electrodes, Implanted , Electroencephalography , Extracellular Signal-Regulated MAP Kinases/metabolism , Flurothyl , Gene Expression , Genetic Predisposition to Disease , Immunohistochemistry , Male , Mice, Inbred C57BL , Mice, Inbred DBA , Species Specificity
18.
Hum Mol Genet ; 23(17): 4663-73, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24760772

ABSTRACT

Filamin B (FlnB) is an actin-binding protein thought to transduce signals from various membrane receptors and intracellular proteins onto the actin cytoskeleton. Formin1 (Fmn1) is an actin-nucleating protein, implicated in actin assembly and intracellular signaling. Human mutations in FLNB cause several skeletal disorders associated with dwarfism and early bone fusion. Mouse mutations in Fmn1 cause aberrant fusion of carpal digits. We report here that FlnB and Fmn1 physically interact, are co-expressed in chondrocytes in the growth plate and share overlapping expression in the cell cytoplasm and nucleus. Loss of FlnB leads to a dramatic decrease in Fmn1 expression at the hypertrophic-to-ossification border. Loss of Fmn1-FlnB in mice leads to a more severe reduction in body size, weight and growth plate length, than observed in mice following knockout of either gene alone. Shortening of the long bone is associated with a decrease in chondrocyte proliferation and an overall delay in ossification in the double-knockout mice. In contrast to FlnB null, Fmn1 loss results in a decrease in the width of the prehypertrophic zone. Loss of both proteins, however, causes an overall decrease in the width of the proliferation zone and an increase in the differentiated hypertrophic zone. The current findings suggest that Fmn1 and FlnB have shared and independent functions. FlnB loss promotes prehypertrophic differentiation whereas Fmn1 leads to a delay. Both proteins, however, regulate chondrocyte proliferation, and FlnB may regulate Fmn1 function at the hypertrophic-to-ossification border, thereby explaining the overall delay in ossification.


Subject(s)
Cell Differentiation , Chondrocytes/metabolism , Chondrocytes/pathology , Fetal Proteins/metabolism , Filamins/metabolism , Growth Plate/metabolism , Growth Plate/pathology , Microfilament Proteins/metabolism , Nuclear Proteins/metabolism , Animals , Calcification, Physiologic , Cell Proliferation , Fetal Proteins/deficiency , Filamins/deficiency , Formins , Humans , Hypertrophy , Mice, Knockout , Microfilament Proteins/deficiency , Nuclear Proteins/deficiency , Protein Binding , Protein Transport , Receptor, Parathyroid Hormone, Type 1/metabolism
19.
PLoS One ; 9(3): e90506, 2014.
Article in English | MEDLINE | ID: mdl-24594686

ABSTRACT

Identifying the genetic basis of epilepsy in humans is difficult due to its complexity, thereby underlying the need for preclinical models with specific aspects of seizure susceptibility that are tractable to genetic analyses. In the repeated-flurothyl model, mice are given 8 flurothyl-induced seizures, once per day (the induction phase), followed by a 28-day rest period (incubation phase) and final flurothyl challenge. This paradigm allows for the tracking of multiple phenotypes including: initial generalized seizure threshold, decreases in generalized seizure threshold with repeated flurothyl exposures, and changes in the complexity of seizures over time. Given the responses we previously reported in C57BL/6J mice, we analyzed substrains of the C57BL lineage to determine if any of these phenotypes segregated in these substrains. We found that the generalized seizure thresholds of C57BL/10SNJ and C57BL/10J mice were similar to C57BL/6J mice, whereas C57BL/6NJ and C57BLKS/J mice showed lower generalized seizure thresholds. In addition, C57BL/6J mice had the largest decreases in generalized seizure thresholds over the induction phase, while the other substrains were less pronounced. Notably, we observed only clonic seizures during the induction phase in all substrains, but when rechallenged with flurothyl after a 28-day incubation phase, ∼80% of C57BL/6J and 25% of C57BL/10SNJ and C57BL/10J mice expressed more complex seizures with tonic manifestations with none of the C57BL/6NJ and C57BLKS/J mice having complex seizures with tonic manifestations. These data indicate that while closely related, the C57BL lineage has significant diversity in aspects of epilepsy that are genetically controlled. Such differences further highlight the importance of genetic background in assessing the effects of targeted deletions of genes in preclinical epilepsy models.


Subject(s)
Disease Models, Animal , Epilepsy/genetics , Flurothyl/pharmacology , Seizures/chemically induced , Analysis of Variance , Animals , Crosses, Genetic , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred C57BL , Seizures/genetics , Species Specificity
20.
Am J Hum Genet ; 94(1): 62-72, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24360808

ABSTRACT

Joubert syndrome (JBTS) is a recessive ciliopathy in which a subset of affected individuals also have the skeletal dysplasia Jeune asphyxiating thoracic dystrophy (JATD). Here, we have identified biallelic truncating CSPP1 (centrosome and spindle pole associated protein 1) mutations in 19 JBTS-affected individuals, four of whom also have features of JATD. CSPP1 mutations explain ∼5% of JBTS in our cohort, and despite truncating mutations in all affected individuals, the range of phenotypic severity is broad. Morpholino knockdown of cspp1 in zebrafish caused phenotypes reported in other zebrafish models of JBTS (curved body shape, pronephric cysts, and cerebellar abnormalities) and reduced ciliary localization of Arl13b, further supporting loss of CSPP1 function as a cause of JBTS. Fibroblasts from affected individuals with CSPP1 mutations showed reduced numbers of primary cilia and/or short primary cilia, as well as reduced axonemal localization of ciliary proteins ARL13B and adenylyl cyclase III. In summary, CSPP1 mutations are a major cause of the Joubert-Jeune phenotype in humans; however, the mechanism by which these mutations lead to both JBTS and JATD remains unknown.


Subject(s)
Cell Cycle Proteins/genetics , Cerebellar Diseases/genetics , Cilia/genetics , Ellis-Van Creveld Syndrome/genetics , Eye Abnormalities/genetics , Kidney Diseases, Cystic/genetics , Microtubule-Associated Proteins/genetics , Mutation , Retina/abnormalities , Abnormalities, Multiple , Adolescent , Animals , Cerebellum/abnormalities , Child , Child, Preschool , Cilia/pathology , Exons , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Knockdown Techniques , Humans , Infant , Male , Phenotype , Sequence Analysis, DNA , Young Adult , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...