Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Sci ; 11(3)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38535847

ABSTRACT

Horse transport is considered a cause of stress in animals and is known to affect the 5-HT concentrations in both the brain and other tissues. The aim of this research was to investigate the effect of horse transportation and slaughter stress on plasma serotonin's concentration and the expression levels of the related 5-HT1B and 5-HT2A receptors in PBMCs. Furthermore, the IL-12 levels and a variety of blood parameters, including triglycerides, total cholesterol, glucose, aspartate aminotransferase, creatine phosphokinase, lactate dehydrogenase, were also considered. This research was carried out on 32 horses submitted to short road transport of 40 km to slaughter. Blood samples were collected in baseline conditions (T0) and 24 h later, after they were slaughtered (T1). The results showed a significantly increased expression of 5-HT1B and 5-HT2A receptors and a significantly decreased expression of IL-12 in PBMCs at T1 vs. T0. Furthermore, a significant increase in cortisol and glucose concentrations, and LDH activity was observed at T1. In contrast, a significantly lower circulating 5-HT concentration was observed at T1 vs. T0. These results indicate that the stress induced by transport and slaughter stimuli led to the serotoninergic system's activation, suggesting that the expression of serotonin receptors could be used as a pivotal marker of stress, with potential applications for the improvement of elective protocols to observe the guidelines relating to transported horses.

2.
Vet World ; 15(7): 1641-1649, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36185508

ABSTRACT

Background and Aim: Toxoplasma gondii is a global zoonotic parasite infecting virtually all warm-blooded species, although a species-specific variability is evident referring to symptoms frame. Both the success of T. gondii and the outcome of infection depend on a delicate balance between host cellular pathways and the evasion or modulation strategies elicited by the parasite. The hormonal and molecular mechanisms involved in this delicate host-parasite balance are still unclear, especially when considering intermediate host species other than mouse. This study aimed to assess any correlation between T. gondii infection and selected molecular and hormonal factors involved in responses to infection in susceptible species such as swine. Moreover, blood counts and hematochemical assays (glucose, total cholesterol, and triglycerides dosage) were performed to evaluate the overall health condition of animals. Materials and Methods: Toxoplasmosis was diagnosed by enzyme-linked immunosorbent assay for antibodies determination and real-time polymerase chain reaction (RT-PCR) for T. gondii DNA detection. Target genes coding for key factors of cell responses to T. gondii infection were selected, and their transcription was assessed in various tissues by quantitative RT-PCR. 17-ß estradiol concentrations were assessed by fluorimetric enzyme-linked immunoassay and the AIA-360 automated immunoassay analyzer. Blood count and hematochemical analyses were performed by a blood cell counter and a spectrophotometer, respectively. Results: The present research highlighted significant differences among infected and uninfected swine (control group) for both transcription profiles of some of the molecular factors considered and 17-ß estradiol concentrations. Referring to the assessed hematological and biochemical parameters, no statistically significant differences were observed in infected swine compared to the control group. Conclusion: Our results contribute to the enrichment of data available about the subject and could be useful for a deeper knowledge of the interaction between this parasite and its hosts. However, more aspects are still unclear, such as the effective response of downstream molecules from the same pathways to the variation of factors observed in this study either assessing how the same factors respond to Toxoplasma gondii infection in other host speciesand further analyses should be performed on other host species.

3.
J Equine Vet Sci ; 88: 102969, 2020 May.
Article in English | MEDLINE | ID: mdl-32303327

ABSTRACT

Serotonin (5-hydroxytryptamine [5-HT]) may induce metabolic effects in different cell types, including leukocytes. In horses, 5-HT is involved in physiological and behavioral functions. Physical exercise is known to increase the amounts of 5-HT both in brain and periphery, but so far, the signal mechanism in response to exercise is not known. The aim of the study was to investigate the effect of a racehorse intensive training session on plasma 5-HT levels, serotonin transporter (SERT), 5HT1A, 5-HT2A, 5-HT1B, 5-HT7 receptor, interleukin-1 beta, and tumor necrosis factor-alpha expression in horse peripheral blood mononuclear cells (PBMC). In particular, the research was carried out on 12 trained horses performing daily training. Plasma 5-HT levels were analyzed in platelet-poor plasma fraction by enzyme-linked immunosorbent assay at T0, T1, and T2 (pretraining, 30 minutes post-training, and 2 hours post-training session), respectively. Peripheral blood mononuclear cells were isolated to perform real-time polymerase chain reaction for the evaluation of SERT, 5-HT receptor, and cytokine mRNA levels. The results showed significantly increased levels of plasma 5-HT, 5HT1A, and 5-HT2A and significantly decreased levels of SERT, 5-HT1B, 5-HT7, and both cytokine mRNAs in PBMC at T1, compared with T0 and T2. The results were confirmed by in vitro experiment. Training may induce a lower degree of 5-HT storage and, therefore, a higher plasma 5-HT concentrations. Leukocyte 5-HT receptor mRNAs seem strongly influenced by the exercise. Observed changes suggest a transient neuroendocrinological response to the exercise. A better understanding of the influence of physical exercise on serotoninergic system could have potential application for the implementation of training protocols in racing horses.


Subject(s)
Leukocytes, Mononuclear , Physical Conditioning, Animal , Animals , Horses , Leukocytes , Receptors, Serotonin/genetics , Serotonin
4.
J Equine Vet Sci ; 84: 102818, 2020 01.
Article in English | MEDLINE | ID: mdl-31864456

ABSTRACT

Exercise represents a physical stress that challenges homeostasis affecting central and peripheral serotoninergic systems. The influence of the exercise on circulating serotonin (5-hydroxytryptamine [5-HT]) levels depends on training state as well as the exercise protocol. The purpose of the present research was to determine changes of plasma 5-HT in sport horses in response to training (T) and simulated race (SR) and in addition to assess the possible presence of significant differences on circulating 5-HT between two different sessions of exercise. In particular, the research was carried out on 18 trained horses performing daily training and race activity. Plasma 5-HT levels were analyzed in platelet poor plasma fraction by ELISA assay at T0 (before exercise), T1 (30 minutes after exercise) and T2 (2 hours after exercise). The hypothesis was that both exercise sessions could affect plasma 5-HT levels. Results showed a significant increase of plasma 5-HT levels at T1, compared with T0, both after simulated race and training activity. These effects are probably related to an increased 5-HT release from platelets and/or an increased peripheral 5-HT synthesis induced from exercise. At T2, plasma 5-HT concentrations showed a significant decrease to physiological levels in both sessions. Moreover, plasma 5-HT levels at T1 (SR) were significantly higher than those at T1 (T). Targeting peripheral 5-HT could be useful to assess the physiological adaptability of horses to the exercise, together with other selection techniques of sport horses.


Subject(s)
Physical Conditioning, Animal , Serotonin , Animals , Blood Platelets , Horses , Plasma
5.
Vet World ; 13(4): 681-686, 2019 Apr.
Article in English | MEDLINE | ID: mdl-32546912

ABSTRACT

BACKGROUND AND AIM: During the physiological growing, thyroid and proteoglycan glycosaminoglycan (GAG) changes dynamically occur, according to genetic and non-genetic factors. The purpose of this research was to compare the effects of early postnatal development (10 days) until 210 days of life on the triiodothyronine (T3), thyroxine (T4), the relative T4:T3 ratio, and GAGs profile, and to define the different reference intervals of the calf's development through the various growing phases. MATERIALS AND METHODS: The effect of growing on total thyroid hormones and GAG profiles was studied from 10 days to 210days of age in 64 clinically healthy Brown calves, 30males and 34females. Blood samples were collected at 10, 20, 30, 60, 90, 120, 150, 180, and 210days of age. RESULTS: The results showed a significant effect of a calf's growth on T3, T4, and GAG values (p<0.0001). Significant correlations between T3 and T4 were observed. Compared to the previous time point, T3 showed a significant decrease at 20days and at 60days (p<0.01), while a significant increase was observed at 90days and 210days (p<0.05); T4 showed a significant decrease at 20days (p<0.01), while significant increases were observed at both 180days and 210days (p<0.05); GAGs showed a significant increase at 120days and 210days (p<0.05). Positive and significant correlations between BW and GAGs in both males (p<0.0057) and females (p<0.0059) were observed. CONCLUSION: It can be concluded that the highest T3 and T4 concentrations have been associated with the early growing process (10days), with an increasing trend also at 210days, it is possible to hypothesize a probable metabolic effect of thyroid function in anabolic and/or catabolic directions during the calves' development. Likewise, it can be reasonably inferred that the highest plasma GAGs at 210days may be due to their metabolic role during the development of growing calves. Taken together, these findings suggest the potential and relative contribution made by thyroid and GAGs effects on the dynamics of growing calves.

6.
Vet World ; 11(10): 1500-1505, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30532508

ABSTRACT

BACKGROUND AND AIM: Toxoplasma gondii is an intracellular parasite that commonly infects warm-blooded animals, including humans. Virtually all species can be infected, but a species-specific variability is evident, in terms of both type and severity of the symptoms encountered. As serotonin (5-hydroxytryptamine [5-HT]) plays an important regulatory role in both physiological and immune responses, the aim of this research was to assess whether toxoplasmosis disease could affect plasma 5-HT concentration and/or hematochemical parameters in a particularly susceptible species to infection as sheep. MATERIALS AND METHODS: 5-HT plasma levels were analyzed in platelet-poor plasma fraction by enzyme-linked immunosorbent assay. Blood count and hematochemical parameters were evaluated. Total proteins (TPs), glucose (Glu), and lactate dehydrogenase were determined by a spectrophotometer. RESULTS: Results showed significantly higher levels in plasma 5-HT, monocytes, and TP and significantly lower levels of Glu, in infected sheep compared to the control group. CONCLUSION: Results could support the hypothesis of an effect of toxoplasmosis infection on plasma 5-HT concentrations in sheep. More research is needed to assess the function of 5-HT in the regulation of infected sheep's immune responses.

7.
Res Vet Sci ; 118: 184-190, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29518708

ABSTRACT

Serotonin (5-HT) is a neurohormone transported from plasma into platelets and leukocytes by a specific transporter (SERT). While it is known that the brain 5-HT system is modulated by physical exercise, the peripheral serotoninergic response to exercise is not yet fully elucidated. In particular, this study aimed to evaluate changes in plasma 5-HT levels and equine leukocyte SERT expression in response to treadmill exercise in untrained horses. Analyses were carried out pre- and post-treadmill exercise. 5-HT plasma levels were analysed by HPLC. Leukocytes and platelets were isolated to perform Real Time PCR for the evaluation of SERT mRNA levels. Western blot was conducted for the detection of SERT protein levels. The presence of SERT in leukocytes was analysed by flow cytometry. The functionality of SERT on leukocytes was investigated by using paroxetine as inhibitor of 5-HT reuptake. Results showed a significant decrease in SERT levels after exercise in both leukocytes and platelets and a significant increase in plasma 5-HT levels. Flow cytometry revealed that SERT is functional in one specific horse leukocyte subpopulation, still not identified, and paroxetine was able to block 5-HT reuptake into leukocytes. The exercise may have induced an increased mobilization of free-tryptophan and a release of 5-HT from the stores in the blood. High concentrations of plasma 5-HT could have caused a reduction in SERT expression affecting cellular 5-HT storage/uptake. The increase of cortisol levels after treadmill exercise was not significant. Exercise modulates the peripheral serotonin metabolism. More research is needed to assess its physiological implications.


Subject(s)
Leukocytes/metabolism , Physical Conditioning, Animal/physiology , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin/blood , Animals , Blood Platelets , Brain , Exercise Test/veterinary , Horses
8.
Vet Res Commun ; 35(8): 521-30, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21881904

ABSTRACT

The aim of this study was to provide basal values of phospholipid (PL) composition in different animal species by 31P NMR analysis using detergents. This fast and accurate method allowed a quantitative analysis of PLs without any previous separation. Plasma and erythrocyte membrane PLs were investigated in mammals (pig, cow, horse). Moreover, for the first time, the composition of plasma PLs in avian (chicken and ostrich) was performed by 31P NMR. Significant qualitative and quantitative interspecies differences in plasma PL levels were found. Phosphatidilcholine (PC) and sphingomyelin (SPH) levels were significantly higher (P < 0.001) in chicken plasma than all the other species tested. In erythrocytes, cow PC and phosphatidylcholine diarachidoyl were significantly lower (P < 0.001) than for pigs and horses, whereas pig PC presented intermediate values among cows and horses. Inorganic phosphate and 2,3-diphosphoglycerate levels were also significantly different between the species under investigation. The [SPH/total PLs] molar ratios in erythrocytes confirmed interspecies differences in phospholipid composition while the PC/SPH molar ratios could be related to a distinct erythrocyte flexibility and aggregability. Diet and nutrition may contribute primarily to the interspecies differences in plasma PL amounts detected. Significant differences between chicken plasma PC and SPH levels and those of the other animal species could be ascribed to a fat metabolism specific to egg production.


Subject(s)
Cell Membrane/chemistry , Erythrocytes/chemistry , Phospholipids/chemistry , Phosphorus/chemistry , Animals , Chickens , Magnetic Resonance Spectroscopy , Mammals , Species Specificity , Struthioniformes
SELECTION OF CITATIONS
SEARCH DETAIL
...