Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(29): 26479-26496, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37521653

ABSTRACT

A library of structurally related coumarins was generated through synthesis reactions and chemical modification reactions to obtain derivatives with antiproliferative activity both in vivo and in vitro. Out of a total of 35 structurally related coumarin derivatives, seven of them showed inhibitory activity in in vitro tests against Taq DNA polymerase with IC50 values lower than 250 µM. The derivatives 4-(chloromethyl)-5,7-dihydroxy-2H-chromen-2-one (2d) and 4-((acetylthio)methyl)-2-oxo-2H-chromen-7-yl acetate (3c) showed the most promising anti-polymerase activity with IC50 values of 20.7 ± 2.10 and 48.25 ± 1.20 µM, respectively. Assays with tumor cell lines (HEK 293 and HCT-116) were carried out, and the derivative 4-(chloromethyl)-7,8-dihydroxy-2H-chromen-2-one (2c) was the most promising, with an IC50 value of 8.47 µM and a selectivity index of 1.87. In addition, the derivatives were evaluated against Saccharomyces cerevisiae strains that report about common modes of actions, including DNA damage, that are expected for agents that cause replicative stress. The coumarin derivatives 7-(2-(oxiran-2-yl)ethoxy)-2H-chromen-2-one (5b) and 7-(3-(oxiran-2-yl)propoxy)-2H-chromen-2-one (5c) caused DNA damage in S. cerevisiae. The O-alkenylepoxy group stands out as that with the most important functionality within this family of 35 derivatives, presenting a very good profile as an antiproliferative scaffold. Finally, the in vitro antiretroviral capacity was tested through RT-PCR assays. Derivative 5c showed inhibitory activity below 150 µM with an IC50 value of 134.22 ± 2.37 µM, highlighting the O-butylepoxy group as the functionalization responsible for the activity.

2.
J Inorg Biochem ; 238: 112033, 2023 01.
Article in English | MEDLINE | ID: mdl-36396525

ABSTRACT

Alzheimer's disease (AD) is related to the presence of extracellular aggregated amyloid-ß peptide (Aß), which binds copper(II) with high affinity in its N-terminal region. In this sense, two new 1-methylimidazole-containing N-acylhydrazonic metallophores, namely, X1TMP and X1Benz, were synthesized as hydrochlorides and characterized. The compound X1TMP contains the 3,4,5-trimethoxybenzoyl moiety present in the structure of mescaline, a natural hallucinogenic protoalkaloid that occurs in some species of cacti. Single crystals of X1Benz, the unsubstituted derivative of X1TMP, were obtained. The experimental partition coefficients of both compounds were determined, as well as their apparent affinity for Cu2+ in aqueous solution. Ascorbate consumption assays showed that these N-acylhydrazones are able to lessen the production of ROS by the Cu(Aß)-system, and a short-time scale aggregation study, measured through turbidity and confirmed by TEM images, revealed their capacity in preventing Aß fibrillation at equimolar conditions in the presence and absence of copper. 1H15N HSQC NMR experiments demonstrated a direct interaction between Aß and X1Benz, the most soluble of the compounds. The Cu2+ sequestering potential of this hydrazone towards Aß was explored by 1H NMR. Although increasing amounts of X1Benz were unexpectedly not efficient at removing the metal-induced perturbations in Aß backbone amides, the broadening effects observed on the compound's signals indicate the formation of a ternary Aß­copper-X1Benz species, which can be responsible for the observed ROS-lessening and aggregation-preventing activities. Overall, the N-acylhydrazones X1TMP and X1Benz have shown promising prospects as agents for the treatment of AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Copper/chemistry , Mescaline , Reactive Oxygen Species/metabolism , Amyloid beta-Peptides/chemistry
3.
Protein Sci ; 31(7): e4360, 2022 07.
Article in English | MEDLINE | ID: mdl-35762717

ABSTRACT

Recent studies revealed that molecular events related with the physiology and pathology of αS might be regulated by specific sequence motifs in the primary sequence of αS. The importance of individual residues in these motifs remains an important open avenue of investigation. In this work, we have addressed the structural details related to the amyloid fibril assembly and lipid-binding features of αS through the design of site-directed mutants at position 39 of the protein and their study by in vitro and in vivo assays. We demonstrated that aromaticity at position 39 of αS primary sequence influences strongly the aggregation properties and the membrane-bound conformations of the protein, molecular features that might have important repercussions for the function and dysfunction of αS. Considering that aggregation and membrane damage is an important driver of cellular toxicity in amyloid diseases, future work is needed to link our findings with studies based on toxicity and neuronal cell death. BRIEF STATEMENT OUTLINING SIGNIFICANCE: Modulation by distinct sequential motifs and specific residues of αS on its physiological and pathological states is an active area of research. Here, we demonstrated that aromaticity at position 39 of αS modulates the membrane-bound conformations of the protein, whereas removal of aromatic functionality at position 39 reduces strongly the amyloid assembly in vitro and in vivo. Our study provides new evidence for the modulation of molecular events related with the physiology and pathology of αS.


Subject(s)
Amyloid , alpha-Synuclein , Amyloid/genetics , Amyloid/metabolism , Membranes/metabolism , Protein Binding , Protein Structure, Secondary , alpha-Synuclein/chemistry
4.
J Phys Chem B ; 126(20): 3632-3639, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35543707

ABSTRACT

Mass spectrometry and single molecule force microscopy are two experimental approaches able to provide structural information on intrinsically disordered proteins (IDPs). These techniques allow the dissection of conformational ensembles in their main components, although at a low-resolution level. In this work, we interpret the results emerging from these experimental approaches on human alpha synuclein (AS) by analyzing a previously published 73 µs-long molecular-dynamics (MD) simulation of the protein in explicit solvent. We further compare MD-based predictions of single molecule Förster resonance energy transfer (smFRET) data of AS in solution with experimental data. The combined theoretical and experimental data provide a description of AS main conformational ensemble, shedding light into its intramolecular interactions and overall structural compactness. This analysis could be easily transferred to other IDPs.


Subject(s)
Intrinsically Disordered Proteins , Humans , Intrinsically Disordered Proteins/chemistry , Molecular Dynamics Simulation , Protein Conformation , Single Molecule Imaging , alpha-Synuclein/chemistry
5.
J Inorg Biochem ; 229: 111715, 2022 04.
Article in English | MEDLINE | ID: mdl-35074552

ABSTRACT

Amyloid aggregation of α-synuclein (AS) is one of the hallmarks of Parkinson's disease (PD). Copper ions specifically bind at the N-terminus of AS, accelerating protein aggregation. Its protein homolog ß-synuclein (BS) is also a copper binding protein, but it inhibits AS aggregation. Here, a comparative spectroscopic study of the Cu2+ binding properties of AS and BS has been performed, using electronic absorption, circular dichroism (CD) and electronic paramagnetic resonance (EPR). Our comparative spectroscopic study reveals striking similarities between the Cu2+ binding features of the two proteins. The Cu2+ binding site at the N-terminal group of BS protein, modeled by the BS (1-15) fragment is identical to that of AS; however, its rate of reduction is three times faster as compared to the AS site, consistent with BS having an additional Met residue in its Met1-Xn-Met5-Xn-Met10 motif. The latter is also evident in the cyclic voltammetry studies of the Cu-BS complex. On the other hand, the Cu2+ binding features of the His site in both proteins, as modeled by AS(45-55) and BS(60-70), are identical, indicating that the shift in the His position does not affect its coordination features. Finally, replacement of Glu46 by Ala does not alter Cu2+ binding to the His site, suggesting that the familial PD E46K mutation would not impact copper-induced aggregation. While further studies of the redox activity of copper bound to His50 in AS are required to understand the role of this site in metal-mediated aggregation, our study contributes to a better understanding of the bioinorganic chemistry of PD.


Subject(s)
Copper/metabolism , alpha-Synuclein/metabolism , beta-Synuclein/metabolism , Amino Acid Sequence , Binding Sites , Histidine/chemistry , Histidine/metabolism , Methionine/chemistry , Methionine/metabolism , Protein Binding , alpha-Synuclein/chemistry , beta-Synuclein/chemistry
6.
Nat Prod Res ; 35(22): 4703-4708, 2021 Nov.
Article in English | MEDLINE | ID: mdl-31920108

ABSTRACT

A phytochemical study was performed on three native plant species from the central-western zone of Argentina: Buddleja cordobensis Grisebach, Baccharis salicina Torr. & A. Gray and Nepeta cataria L. We could obtain verbascoside (1) from B. cordobensis. From N. cataria, we could obtain 1, 5, 9-epi-deoxyloganic acid (2) L. Finally, we could isolate 2-ß-(L-rhamnopyranosyl)-3-angeloyloxy-15-acetyloxy-7,13(14)-E-dien-ent-labdane (3) and 2-ß-(L-rhamnopyranosyl)-3-α-angeloyloxy-15-hydroxy-7,13(14)-E-dien-ent-labdane (4) from B. salicina. Moreover, three derivatives from 1, and one semi-synthetic derivative from 2, were prepared. PCR reaction was used to analyse the activity against DNA polymerase and cell culture to determine cytotoxicity and antitumoral activity. Verbascoside (1) was strongly active in the nanomolar scale (IC50 = 356 nM) against DNA polymerization. Moreover, verbascoside was also strongly active in the nanomolar scale against human melanoma cell line (IC50 = 256 nM) and human colorectal cell line (IC50 = 320 nM). Furthermore, derivatives 6 and 7 were cytotoxic against both cancer cell lines.


Subject(s)
Buddleja , Glycosides , Glucosides/pharmacology , Glycosides/pharmacology , Humans , Phenols
7.
Int J Mol Sci ; 21(14)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32709107

ABSTRACT

Recent studies suggest that Tyr-39 might play a critical role for both the normal function and the pathological dysfunction of α-synuclein (αS), an intrinsically disordered protein involved in Parkinson's disease. We perform here a comparative analysis between the structural features of human αS and its Y39A, Y39F, and Y39L variants. By the combined application of site-directed mutagenesis, biophysical techniques, and enhanced sampling molecular simulations, we show that removing aromatic functionality at position 39 of monomeric αS leads to protein variants populating more compact conformations, conserving its disordered nature and secondary structure propensities. Contrasting with the subtle changes induced by mutations on the protein structure, removing aromaticity at position 39 impacts strongly on the interaction of αS with the potent amyloid inhibitor phthalocyanine tetrasulfonate (PcTS). Our findings further support the role of Tyr-39 in forming essential inter and intramolecular contacts that might have important repercussions for the function and the dysfunction of αS.


Subject(s)
Amyloid/chemistry , Intrinsically Disordered Proteins/chemistry , alpha-Synuclein/chemistry , Amyloid/genetics , Humans , Intrinsically Disordered Proteins/genetics , Parkinson Disease/genetics , Point Mutation , Protein Conformation , Tyrosine/chemistry , Tyrosine/genetics , alpha-Synuclein/genetics
8.
Dalton Trans ; 49(45): 16252-16267, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32391542

ABSTRACT

Although normal aging presents an accumulation of copper and iron in the brain, this becomes more relevant in neurodegeneration. α-Synuclein (α-Syn) misfolding has long been linked with the development of Parkinson's disease (PD). Copper binding promotes aggregation of α-Syn, as well as generalized oxidative stress. In this sense, the use of therapies that target metal dyshomeostasis has been in focus in the past years. Metal-Protein Attenuating Compounds (MPACs) are moderate chelators that aim at disrupting specific, abnormal metal-protein interactions. Our research group has now established that N-acylhydrazones compose a set of truly encouraging MPACs for the bioinorganic management of metal-enhanced aggregopathies. In the present work, a novel ligand, namely 1-methyl-1H-imidazole-2-carboxaldehyde isonicotinoyl hydrazone (X1INH), is reported. We describe solution studies on the interaction and affinity of this compound for copper(ii) ions showing that a fine tuning of metal-affinity was achieved. A series of in vitro biophysical NMR experiments were performed in order to assess the X1INH ability to compete with α-Syn monomers for the binding of both copper(i) and copper(ii) ions, which are central in PD pathology. A preference for copper(i) has been observed. X1INH is less toxic to human neuroglioma (H4) cells in comparison to structure-related compounds. Finally, we show that treatment with X1INH results in a higher number of smaller, less compact inclusions in a well-established model of α-Syn aggregation. Thus, X1INH constitutes a promising MPAC for the treatment of Parkinson's disease.


Subject(s)
Copper/metabolism , Hydrazones/chemistry , Hydrazones/pharmacology , Protein Aggregates/drug effects , Synucleinopathies/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Cell Line , Drug Design , Humans , Ligands , Protein Binding/drug effects , Synucleinopathies/pathology
9.
Biochim Biophys Acta Proteins Proteom ; 1868(1): 140298, 2020 01.
Article in English | MEDLINE | ID: mdl-31676453

ABSTRACT

The misfolding and aggregation of alpha-synuclein (aSyn) are thought to be central events in synucleinopathies. The physiological function of aSyn has been related to vesicle binding and trafficking, but the precise molecular mechanisms leading to aSyn pathogenicity are still obscure. In cell models, aSyn does not readily aggregate, even upon overexpression. Therefore, cellular models that enable the study of aSyn aggregation are essential tools for our understanding of the molecular mechanisms that govern such processes. Here, we investigated the structural features of SynT, an artificial variant of aSyn that has been widely used as a model of aggregation in mammalian cell systems, since it is more prone to aggregation than aSyn. Using Nuclear Magnetic Resonance (NMR) spectroscopy we performed a detailed structural characterization of SynT through a systematic comparison with normal, unmodified aSyn. Interestingly, we found that the conformations adopted by SynT resemble those described for the unmodified protein, demonstrating the usefulness of SynT as a model for aSyn aggregation. However, subtle differences were observed at the N-terminal region involving transient intra and/or intermolecular interactions that are known to regulate aSyn aggregation. Importantly, our results indicate that disturbances in the N-terminal region of SynT, and the consequent decrease in membrane binding of the modified protein, might contribute to the observed aggregation behavior of aSyn, and validate the use of SynT, one of the few models of aSyn aggregation in cultured cells.


Subject(s)
Synucleinopathies , alpha-Synuclein/chemistry , Cell Line, Tumor , Escherichia coli/genetics , Humans , Microscopy, Electron, Transmission , Protein Aggregation, Pathological , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , alpha-Synuclein/ultrastructure
10.
Nat Commun ; 10(1): 5535, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31797870

ABSTRACT

Parkinson's disease (PD) and Multiple System Atrophy (MSA) are clinically distinctive diseases that feature a common neuropathological hallmark of aggregated α-synuclein. Little is known about how differences in α-synuclein aggregate structure affect disease phenotype. Here, we amplified α-synuclein aggregates from PD and MSA brain extracts and analyzed the conformational properties using fluorescent probes, NMR spectroscopy and electron paramagnetic resonance. We also generated and analyzed several in vitro α-synuclein polymorphs. We found that brain-derived α-synuclein fibrils were structurally different to all of the in vitro polymorphs analyzed. Importantly, there was a greater structural heterogeneity among α-synuclein fibrils from the PD brain compared to those from the MSA brain, possibly reflecting on the greater variability of disease phenotypes evident in PD. Our findings have significant ramifications for the use of non-brain-derived α-synuclein fibrils in PD and MSA studies, and raise important questions regarding the one disease-one strain hypothesis in the study of α-synucleinopathies.


Subject(s)
Brain/metabolism , Multiple System Atrophy/metabolism , Parkinson Disease/metabolism , Synucleinopathies/metabolism , Tissue Extracts/metabolism , alpha-Synuclein/metabolism , Aged , Aged, 80 and over , Female , Humans , Male , Models, Molecular , Multiple System Atrophy/diagnosis , Parkinson Disease/diagnosis , Protein Aggregation, Pathological/metabolism , Protein Conformation , Synucleinopathies/diagnosis , alpha-Synuclein/chemistry
11.
J Biol Inorg Chem ; 24(8): 1269-1278, 2019 12.
Article in English | MEDLINE | ID: mdl-31486955

ABSTRACT

The discovery of aggregation inhibitors and the elucidation of their mechanism of action are key in the quest to mitigate the toxic consequences of amyloid formation. We have previously characterized the antiamyloidogenic mechanism of action of sodium phtalocyanine tetrasulfonate ([Na4(H2PcTS)]) on α-Synuclein (αS), demonstrating that specific aromatic interactions are fundamental for the inhibition of amyloid assembly. Here we studied the influence that metal preferential affinity and peripheral substituents may have on the activity of tetrapyrrolic compounds on αS aggregation. For the first time, our laboratory has extended the studies in the field of the bioinorganic chemistry and biophysics to cellular biology, using a well-established cell-based model to study αS aggregation. The interaction scenario described in our work revealed that both N- and C-terminal regions of αS represent binding interfaces for the studied compounds, a behavior that is mainly driven by the presence of negatively or positively charged substituents located at the periphery of the macrocycle. Binding modes of the tetrapyrrole ligands to αS are determined by the planarity and hydrophobicity of the aromatic ring system in the tetrapyrrolic molecule and/or the preferential affinity of the metal ion conjugated at the center of the macrocyclic ring. The different capability of phthalocyanines and meso-tetra (N-methyl-4-pyridyl) porphine tetrachloride ([H2PrTPCl4]) to modulate αS aggregation in vitro was reproduced in cell-based models of αS aggregation, demonstrating unequivocally that the modulation exerted by these compounds on amyloid assembly is a direct consequence of their interaction with the target protein.


Subject(s)
Amyloidogenic Proteins/metabolism , Indoles/metabolism , Porphyrins/metabolism , Protein Multimerization/drug effects , Zinc/metabolism , alpha-Synuclein/metabolism , Amino Acid Sequence , Amyloidogenic Proteins/chemistry , Cell Line, Tumor , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Indoles/chemistry , Indoles/toxicity , Porphyrins/chemistry , Porphyrins/toxicity , Protein Binding , Zinc/chemistry , alpha-Synuclein/chemistry
12.
Inorg Chem ; 58(13): 8800-8819, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31247881

ABSTRACT

Very few inorganic antineoplastic drugs have entered the clinic in the last decades, mainly because of toxicity issues. Because copper is an essential trace element of ubiquitous occurrence, decreased side effects could be expected in comparison with the widely used platinum anticancer compounds. In the present work, two novel hydrazonic binucleating ligands and their µ-hydroxo dicopper(II) complexes were prepared and fully characterized. They differ by the nature of the aromatic group present in their aroylhydrazone moieties: while H3L1 and its complex, 1, possess a thiophene ring, H3L2 and 2 contain the more polar furan heterocycle. X-ray diffraction indicates that both coordination compounds are very similar in structural terms and generate dimeric arrangements in the solid state. Positive-ion electrospray ionization mass spectrometry analyses confirmed that the main species present in a 10% dimethyl sulfoxide (DMSO)/water solution should be [Cu2(HL)(OH)]+ and the DMSO-substituted derivative [Cu2(L)(DMSO)]+. Scattering techniques [dynamic light scattering (DLS) and small-angle X-ray scattering] suggest that the complexes and their free ligands interact with bovine serum albumin (BSA) in a reversible manner. The binding constants to BSA were determined for the complexes through fluorescence spectroscopy. Moreover, to gain insight into the mechanism of action of the compounds, calf thymus DNA binding studies by UV-visible and DLS measurements using plasmid pBR322 DNA were also performed. For the complexes, DLS data seem to point to the occurrence of DNA cleavage to Form III (linear). Both ligands and their dicopper(II) complexes display potent antiproliferative activity in a panel of four cancer cell lines, occasionally even in the submicromolar range, with the complexes being more potent than the free ligands. Our data on cellular models correlate quite well with the DNA interaction experiments. The results presented herein show that aroylhydrazone-derived binucleating ligands, as well as their dinuclear µ-hydroxodicopper(II) complexes, may represent a promising structural starting point for the development of a new generation of highly active potential antitumor agents.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Hydrazones/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Cattle , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/toxicity , Copper/chemistry , DNA/chemistry , DNA Cleavage/drug effects , Dogs , Humans , Hydrazones/chemical synthesis , Hydrazones/chemistry , Hydrazones/toxicity , Isomerism , Ligands , Madin Darby Canine Kidney Cells , Mice , Plasmids/chemistry , Protein Multimerization/drug effects , Serum Albumin, Bovine/metabolism
13.
J Neurochem ; 150(5): 507-521, 2019 09.
Article in English | MEDLINE | ID: mdl-31099098

ABSTRACT

Parkinson's disease is the second most common neurodegenerative disorder worldwide. Neurodegeneration in this pathology is characterized by the loss of dopaminergic neurons in the substantia nigra, coupled with cytoplasmic inclusions known as Lewy bodies containing α-synuclein. The brain is an organ that concentrates metal ions, and there is emerging evidence that a break-down in metal homeostasis may be a critical factor in a variety of neurodegenerative diseases. α-synuclein has emerged as an important metal-binding protein in the brain, whereas these interactions play an important role in its aggregation and might represent a link between protein aggregation, oxidative damage, and neuronal cell loss. Additionally, α-synuclein undergoes several post-translational modifications that regulate its structure and physiological function, and may be linked to the aggregation and/or oligomer formation. This review is focused on the interaction of this protein with physiologically relevant metal ions, highlighting the cases where metal-AS interactions profile as key modulators for its structural, aggregation, and membrane-binding properties. The impact of α-synuclein phosphorylation and N-terminal acetylation in the metal-binding properties of the protein are also discussed, underscoring a potential interplay between PTMs and metal ion binding in regulating α-synuclein physiological functions and its role in pathology. This article is part of the Special Issue "Synuclein".


Subject(s)
Metals/metabolism , Parkinson Disease/metabolism , Protein Processing, Post-Translational , alpha-Synuclein/metabolism , Acetylation , Binding Sites , Brain/metabolism , Cations, Divalent/metabolism , Humans , Oxidative Stress , Oxygen/metabolism , Phosphorylation , Protein Aggregation, Pathological , Protein Binding , Protein Domains , Structure-Activity Relationship , Sumoylation , alpha-Synuclein/chemistry
14.
Metallomics ; 10(10): 1383-1389, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30246210

ABSTRACT

The identity of the Cu(i) binding ligands at Met-X3-Met site of AcαS and its role into the affinity and structural properties of the interaction were elucidated by NMR spectroscopy. We provide evidence that the source of ligands for Cu(i) binding to the Met-X3-Met site comes from the N-terminal acetyl group and the Met-1, Asp-2 and Met-5 residues. From the study of site-directed mutants and synthetic peptide models of αS we demonstrated the critical role played by Met-1 and Met-5 residues on the binding affinity of the Cu(i) complex, acting as the main metal anchoring residues. While having a more modest impact in the affinity features of Cu(i) binding, as compared to the Met residues, the N-terminal acetyl group and Asp-2 are important in promoting local helical conformations, contributing to the stabilization of these structures by favoring Cu(i) binding.


Subject(s)
Amino Acid Motifs , Copper/metabolism , Methionine/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Amino Acid Sequence , Binding Sites , Humans , Ligands , Magnetic Resonance Spectroscopy , Methionine/chemistry , Models, Molecular , Protein Binding , Protein Conformation
15.
Acta Neuropathol Commun ; 6(1): 79, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30107856

ABSTRACT

Alpha-synuclein (aSyn) plays a crucial role in Parkinson's disease (PD) and other synucleinopathies, since it misfolds and accumulates in typical proteinaceous inclusions. While the function of aSyn is thought to be related to vesicle binding and trafficking, the precise molecular mechanisms linking aSyn with synucleinopathies are still obscure. aSyn can spread in a prion-like manner between interconnected neurons, contributing to the propagation of the pathology and to the progressive nature of synucleinopathies. Here, we investigated the interaction of aSyn with membranes and trafficking machinery pathways using cellular models of PD that are amenable to detailed molecular analyses. We found that different species of aSyn can enter cells and form high molecular weight species, and that membrane binding properties are important for the internalization of aSyn. Once internalized, aSyn accumulates in intracellular inclusions. Interestingly, we found that internalization is blocked in the presence of dynamin inhibitors (blocked membrane scission), suggesting the involvement of the endocytic pathway in the internalization of aSyn. By screening a pool of small Rab-GTPase proteins (Rabs) which regulate membrane trafficking, we found that internalized aSyn partially colocalized with Rab5A and Rab7. Initially, aSyn accumulated in Rab4A-labelled vesicles and, at later stages, it reached the autophagy-lysosomal pathway (ALP) where it gets degraded. In total, our study emphasizes the importance of membrane binding, not only as part of the normal function but also as an important step in the internalization and subsequent accumulation of aSyn. Importantly, we identified a fundamental role for Rab proteins in the modulation of aSyn processing, clearance and spreading, suggesting that targeting Rab proteins may hold important therapeutic value in PD and other synucleinopathies.


Subject(s)
Cell Membrane/metabolism , Endocytosis/physiology , Protein Transport/physiology , alpha-Synuclein/metabolism , Biotinylation , Cell Fractionation , Cell Line, Tumor , Cell Membrane/drug effects , Dynamins/pharmacology , Endocytosis/drug effects , Glioma/pathology , Glioma/ultrastructure , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Lysosomes/physiology , Molecular Imaging , Mutation/genetics , Protein Transport/drug effects , Transfection , alpha-Synuclein/genetics , rab GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
16.
J Biol Inorg Chem ; 23(8): 1227-1241, 2018 12.
Article in English | MEDLINE | ID: mdl-30145655

ABSTRACT

With the increasing life expectancy of the world's population, neurodegenerative diseases, such as Alzheimer's disease (AD), will become a much more relevant public health issue. This fact, coupled with the lack of efficacy of the available treatments, has been driving research directed to the development of new drugs for this pathology. Metal-protein attenuating compounds (MPACs) constitute a promising class of agents with potential application on the treatment of neurodegenerative diseases, such as AD. Currently, most MPACs are based on 8-hydroxyquinoline. Recently, our research group has described the hybrid aroylhydrazone containing the 8-hydroxyquinoline group INHHQ as a promising MPAC. By studying the known structure-related ligand HPCIH, which does not contain the phenol moiety, as a simplified chemical model for INHHQ, we aimed to clarify the real impact of the aroylhydrazone group for the MPAC activity of a compound with potential anti-Alzheimer's activity. The present work describes a detailed solution and solid-state study of the coordination of HPCIH with Zn2+ ions, as well as its in vitro binding-ability towards this metal in the presence of the Aß(1-40) peptide. Similar to INHHQ, HPCIH is able to efficiently compete with Aß(1-40) for Zn2+ ions, performing as expected for an MPAC. The similarity between the behaviors of both ligands is remarkable. Taken together, the data presented herein point to aroylhydrazones, such as the compounds HPCIH and the previously published INHHQ, as encouraging MPACs for the treatment of AD.


Subject(s)
Hydrazones/chemistry , Nootropic Agents/chemistry , Pyridines/chemistry , Zinc/chemistry , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Hydrazones/chemical synthesis , Hydrazones/metabolism , Ligands , Molecular Structure , Nootropic Agents/chemical synthesis , Nootropic Agents/metabolism , Peptide Fragments/metabolism , Proof of Concept Study , Protein Binding , Pyridines/chemical synthesis , Pyridines/metabolism , Zinc/metabolism
17.
Biophys J ; 114(5): 1036-1045, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29539391

ABSTRACT

The inherent tendency of proteins to convert from their native states into amyloid aggregates is associated with a range of human disorders, including Alzheimer's and Parkinson's diseases. In that sense, the use of small molecules as probes for the structural and toxic mechanism related to amyloid aggregation has become an active area of research. Compared with other compounds, the structural and molecular basis behind the inhibitory interaction of phthalocyanine tetrasulfonate (PcTS) with proteins such as αS and tau has been well established, contributing to a better understanding of the amyloid aggregation process in these proteins. We present here the structural characterization of the binding of PcTS and its Cu(II) and Zn(II)-loaded forms to the amyloid ß-peptide (Aß) and the impact of these interactions on the peptide amyloid fibril assembly. Elucidation of the PcTS binding modes to Aß40 revealed the involvement of specific aromatic and hydrophobic interactions in the formation of the Aß40-PcTS complex, ascribed to a binding mode in which the planarity and hydrophobicity of the aromatic ring system in the phthalocyanine act as main structural determinants for the interaction. Our results demonstrated that formation of the Aß40-PcTS complex does not interfere with the progression of the peptide toward the formation of amyloid fibrils. On the other hand, conjugation of Zn(II) but not Cu(II) at the center of the PcTS macrocyclic ring modified substantially the binding profile of this phthalocyanine to Aß40 and became crucial to reverse the effects of metal-free PcTS on the fibril assembly of the peptide. Overall, our results provide a firm basis to understand the structural rules directing phthalocyanine-protein interactions and their implications on the amyloid fibril assembly of the target proteins; in particular, our results contradict the hypothesis that PcTS might have similar mechanisms of action in slowing the formation of a variety of pathological aggregates.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Indoles/metabolism , Indoles/pharmacology , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Aggregates/drug effects , Hydrophobic and Hydrophilic Interactions , Isoindoles , Protein Binding
18.
Dalton Trans ; 47(28): 9274-9282, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-29417110

ABSTRACT

The cellular prion protein (PrPC) is a copper binding protein that undergoes post-translational modifications, such as endoproteolytic alpha cleavage, which occurs in the vicinity of the His111 Cu binding site. Alpha cleavage processing of PrPC is considered to be neuroprotective since the cleavage site is located in a region that is key to the conversion of PrPC into the infectious scrapie isoform (PrPSc), yielding a membrane bound C1 fragment of PrPC that still contains His111. In this work, we use hPrP(111-115) fragment as a model peptide to evaluate the impact of alpha cleavage processing of PrPC in its ability to coordinate Cu(ii) ions at His111. By using different spectroscopic techniques such as electronic absorption, circular dichroism, nuclear magnetic resonance, and electron paramagnetic resonance, this study demonstrates that Cu(ii) binding to the cleaved His111 site is highly dependent on Cu and proton concentrations. The imidazole group of His111 and its free NH2 terminus emerge as the main anchoring sites for Cu(ii) coordination, yielding very different complexes from those characterized for the intact His111 site in the full protein. Different Cu(ii) coordination modes that could form with the alpha cleaved PrPC under physiological conditions are identified and characterized. Overall, this study contributes to understand how alpha cleavage processing of PrPC impacts its Cu(ii) binding properties at His111. While the functional implications of Cu binding to the cleaved PrPC remain to be discovered, proteolytic processing of PrPC and its Cu binding features appear to be molecular events that might be strongly linked to its cellular function.

19.
Inorg Chem ; 56(17): 10387-10395, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28820253

ABSTRACT

Alterations in the levels of copper in brain tissue and formation of α-synuclein (αS)-copper complexes might play a key role in the amyloid aggregation of αS and the onset of Parkinson's disease (PD). Recently, we demonstrated that formation of the high-affinity Cu(I) complex with the N-terminally acetylated form of the protein αS substantially increases and stabilizes local conformations with α-helical secondary structure and restricted motility. In this work, we performed a detailed NMR-based structural characterization of the Cu(I) complexes with the full-length acetylated form of its homologue ß-synuclein (ßS), which is colocalized with αS in vivo and can bind copper ions. Our results show that, similarly to αS, the N-terminal region of ßS constitutes the preferential binding interface for Cu(I) ions, encompassing two independent and noninteractive Cu(I) binding sites. According to these results, ßS binds the metal ion with higher affinity than αS, in a coordination environment that involves the participation of Met-1, Met-5, and Met-10 residues (site 1). Compared to αS, the shift of His from position 50 to 65 in the N-terminal region of ßS does not change the Cu(I) affinity features at that site (site 2). Interestingly, the formation of the high-affinity ßS-Cu(I) complex at site 1 in the N-terminus promotes a short α-helix conformation that is restricted to the 1-5 segment of the AcßS sequence, which differs with the substantial increase in α-helix conformations seen for N-terminally acetylated αS upon Cu(I) complexation. Our NMR data demonstrate conclusively that the differences observed in the conformational transitions triggered by Cu(I) binding to AcαS and AcßS find a correlation at the level of their backbone dynamic properties; added to the potential biological implications of these findings, this fact opens new avenues of investigations into the bioinorganic chemistry of PD.


Subject(s)
Coordination Complexes/metabolism , Copper/metabolism , Parkinson Disease/metabolism , beta-Synuclein/metabolism , Acetylation , Binding Sites , Chemistry, Bioinorganic , Coordination Complexes/chemistry , Copper/chemistry , Humans , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Protein Conformation, alpha-Helical , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , beta-Synuclein/chemistry
20.
Chemistry ; 23(53): 13010-13014, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28763125

ABSTRACT

Accumulation of α-synuclein (αSyn) aggregates constitutes the hallmark of synucleinopathies including Parkinson's disease. However, many steps from the innocuous, monomeric αSyn toward misfolded oligomers and fibrillar species remain unclear. Here, we show that αSyn can form in solution α-helical oligomers, which are off-pathway to fibrillization, through interaction with the tetrapyrrole phthalocyanine tetrasulfonate. Chemical cross-linking combined with mass spectrometry reveals a large number of intermolecular cross-links along the entire αSyn sequence in the phthalocyanine tetrasulfonate-stabilized αSyn oligomers. Our study suggests that stabilization of structured oligomers by small molecules provides a viable strategy to interfere with αSyn fibrillization.


Subject(s)
alpha-Synuclein/chemistry , Amino Acid Sequence , Coordination Complexes/chemistry , Cross-Linking Reagents , Mass Spectrometry/methods , Parkinson Disease/metabolism , Protein Binding , Protein Folding , Protein Multimerization , Ruthenium/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...