Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 2634, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551185

ABSTRACT

Lichen symbioses are thought to be stabilized by the transfer of fixed carbon from a photosynthesizing symbiont to a fungus. In other fungal symbioses, carbohydrate subsidies correlate with reductions in plant cell wall-degrading enzymes, but whether this is true of lichen fungal symbionts (LFSs) is unknown. Here, we predict genes encoding carbohydrate-active enzymes (CAZymes) and sugar transporters in 46 genomes from the Lecanoromycetes, the largest extant clade of LFSs. All LFSs possess a robust CAZyme arsenal including enzymes acting on cellulose and hemicellulose, confirmed by experimental assays. However, the number of genes and predicted functions of CAZymes vary widely, with some fungal symbionts possessing arsenals on par with well-known saprotrophic fungi. These results suggest that stable fungal association with a phototroph does not in itself result in fungal CAZyme loss, and lends support to long-standing hypotheses that some lichens may augment fixed CO2 with carbon from external sources.


Subject(s)
Ascomycota , Lichens , Ascomycota/metabolism , Carbohydrate Metabolism , Carbon , Cellulose/metabolism
2.
FEMS Microbiol Ecol ; 95(3)2019 03 01.
Article in English | MEDLINE | ID: mdl-30668688

ABSTRACT

Borderline lichens are simple mutualistic symbioses between fungi and algae, where the fungi form loose mycelia interweaving algal cells, instead of forming a lichen thallus. Schizoxylon albescens shows two nutritional modes: it can either live as a borderline lichen on Populus tremula bark or as a saprotroph on Populus wood. This enables us to investigate the microbiota diversity in simple fungal-algal associations and to study the impact of lichenization on the structure of bacterial communities. We sampled three areas in Sweden covering the distribution of Schizoxylon, and using high-throughput sequencing of the 16S rRNA gene and fluorescence in situ hybridization we characterized the associated microbiota. Bacterial communities in lichenized and saprotrophic Schizoxylon were clearly distinct, but when comparing the microbiota with the respective substrates, only the fruiting bodies show clear differences in composition and abundance from the communities in the substrates. The colonization by either lichenized or saprotrophic mycelia of Schizoxylon did not significantly influence the microbiota in the substrate. This suggests that in a morphologically simple form of lichenization, as represented by the Schizoxylon-Coccomyxa system, algal-fungal interactions do not significantly influence bacterial communities, but a more complex structure of the lichen thallus is likely required for hosting specific microbiota.


Subject(s)
Ascomycota/physiology , Lichens/microbiology , Microbiota , Populus/microbiology , Symbiosis , Ascomycota/genetics , Bacteria/classification , Bacteria/genetics , Chlorophyta/genetics , Chlorophyta/microbiology , Chlorophyta/physiology , Fruiting Bodies, Fungal/physiology , Lichens/genetics , Microbiota/genetics , Plant Bark/microbiology , RNA, Ribosomal, 16S/genetics , Sweden , Wood/microbiology
3.
FEMS Microbiol Ecol ; 92(10)2016 10.
Article in English | MEDLINE | ID: mdl-27507738

ABSTRACT

Experiments to re-synthesise lichens so far focused on co-cultures of fungal and algal partners. However, recent studies have revealed that bacterial communities colonise lichens in a stable and host-specific manner. We were therefore interested in testing how lichenised fungi and algae interact with selected bacteria in an experimental setup. We selected the symbiotic system of Schizoxylon albescens and the algal genera Coccomyxa and Trebouxia as a suitable model. We isolated bacterial strains from the naturally occurring bacterial fraction of freshly collected specimens and established tripartite associations under mixed culture experiments. The bacteria belong to Actinobacteria, Firmicutes and Proteobacteria and corresponded to groups already found associated with fungi including lichens. In mixed cultures with Coccomyxa, the fungus formed a characteristic filamentous matrix and tightly contacted the algae; the bacteria distributed in small patches between the algal cells and attached to the cell walls. In mixed cultures with Trebouxia, the fungus did not develop the filamentous matrix, but bacterial cells were observed to be tightly adhering to the fungal hyphae. Our experiments show that this tripartite fungal-algal-bacterial model system can be maintained in culture and can offer multiple opportunities for functional studies based on experiments under controlled conditions in the laboratory.


Subject(s)
Ascomycota/physiology , Symbiosis , Ascomycota/classification , Bacteria , Chlorophyta/classification , Coculture Techniques , Lichens/classification , Lichens/physiology , Models, Biological , Models, Theoretical , Phylogeny
4.
Environ Microbiol ; 18(5): 1428-39, 2016 05.
Article in English | MEDLINE | ID: mdl-26310431

ABSTRACT

Lichens are obligate symbioses between fungi and green algae or cyanobacteria. Most lichens resynthesize their symbiotic thalli from propagules, but some develop within the structures of already existing lichen symbioses. Diploschistes muscorum starts as a parasite infecting the lichen Cladonia symphycarpa and gradually develops an independent Diploschistes lichen thallus. Here we studied how this process influences lichen-associated microbiomes and photobionts by sampling four transitional stages, at sites in Sweden and Germany, and characterizing their microbial communities using high-throughput 16S rRNA gene and photobiont-specific ITS rDNA sequencing, and fluorescence in situ hybridization. A gradual microbiome shift occurred during the transition, but fractions of Cladonia-associated bacteria were retained during the process of symbiotic reorganization. Consistent changes observed across sites included a notable decrease in the relative abundance of Alphaproteobacteria with a concomitant increase in Betaproteobacteria. Armatimonadia, Spartobacteria and Acidobacteria also decreased during the infection of Cladonia by Diploschistes. The lichens differed in photobiont specificity. Cladonia symphycarpa was associated with the same algal species at all sites, but Diploschistes muscorum had a flexible strategy with different photobiont combinations at each site. This symbiotic invasion system suggests that partners can be reorganized and selected for maintaining potential roles rather than depending on particular species.


Subject(s)
Ascomycota/physiology , Bacteria/isolation & purification , Lichens/microbiology , Microbiota , Symbiosis , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Bacteria/genetics , Betaproteobacteria/genetics , Betaproteobacteria/isolation & purification , In Situ Hybridization, Fluorescence , RNA, Ribosomal, 16S/genetics
5.
Proc Natl Acad Sci U S A ; 112(37): 11600-5, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26324894

ABSTRACT

Adaptive radiations play key roles in the generation of biodiversity and biological novelty, and therefore understanding the factors that drive them remains one of the most important challenges of evolutionary biology. Although both intrinsic innovations and extrinsic ecological opportunities contribute to diversification bursts, few studies have looked at the synergistic effect of such factors. Here we investigate the Teloschistales (Ascomycota), a group of >1,000 lichenized species with variation in species richness and phenotypic traits that hinted at a potential adaptive radiation. We found evidence for a dramatic increase in diversification rate for one of four families within this order--Teloschistaceae--which occurred ∼ 100 Mya (Late Cretaceous) and was associated with a switch from bark to rock and from shady to sun-exposed habitats. This adaptation to sunny habitats is likely to have been enabled by a contemporaneous key novel phenotypic innovation: the production in both vegetative structure (thallus) and fruiting body (apothecia) of anthraquinones, secondary metabolites known to protect against UV light. We found that the two ecological factors (sun exposure and rock substrate) and the phenotypic innovation (anthraquinones in the thallus) were all significant when testing for state-dependent shifts in diversification rates, and together they seem likely to be responsible for the success of the Teloschistaceae, one of the largest lichen-forming fungal lineages. Our results support the idea that adaptive radiations are driven not by a single factor or key innovation, but require a serendipitous combination of both intrinsic biotic and extrinsic abiotic and ecological factors.


Subject(s)
Ascomycota/physiology , Lichens/physiology , Sunlight , Adaptation, Physiological/genetics , Anthraquinones/chemistry , Biodiversity , Biological Evolution , Ecology , Ecosystem , Molecular Sequence Data , Phenotype , Phylogeny , Pigmentation , Sequence Analysis, DNA , Trees , Ultraviolet Rays
6.
Mycologia ; 106(3): 491-504, 2014.
Article in English | MEDLINE | ID: mdl-24871604

ABSTRACT

We clarify the taxonomy and nomenclature of several taxa of the genus Cortinarius subgenus Phlegmacium. To this aim, we have used a combination of morphological and molecular data. The evolutionary relationships of the species were inferred by comparison of the nuITS by means of weighted maximum parsimony, maximum likelihood and two different types of Bayesian methods (with and without a priori alignments). Phylogenetic resolution and support of all or most of the species included in this study and their relationships were possible only when including the phylogenetic signal from ambiguously aligned regions in weighted maximum parsimony analyses (recoded INAASE characters) and when the analysis simultaneously optimized alignment and phylogeny (with BAli-phy). Three species are described as new, Cortinarius mediterraneensis, C. cistoglaucopus and C. palazonianus, and C. olivaecodionysae is proposed for C. dionysae f. olivaceus. Descriptions are provided for these taxonomic and nomenclatural novelties, along with discussions of morphological and phylogenetic affinities to closely related taxa. Scanning microphotographs of the basidiospores are provided for the discussed taxa, and color pictures of the basidiomes in their natural habitat are provided for C. cistoglaucopus, C. mediterraneensis and C. palazonianus.


Subject(s)
Cortinarius/classification , Cortinarius/isolation & purification , Pinus/microbiology , Cortinarius/genetics , Cortinarius/growth & development , Mediterranean Region , Molecular Sequence Data , Phylogeny , Soil Microbiology , Spores, Fungal/growth & development
7.
Mol Phylogenet Evol ; 79: 132-68, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24747130

ABSTRACT

The Lecanoromycetes is the largest class of lichenized Fungi, and one of the most species-rich classes in the kingdom. Here we provide a multigene phylogenetic synthesis (using three ribosomal RNA-coding and two protein-coding genes) of the Lecanoromycetes based on 642 newly generated and 3329 publicly available sequences representing 1139 taxa, 317 genera, 66 families, 17 orders and five subclasses (four currently recognized: Acarosporomycetidae, Lecanoromycetidae, Ostropomycetidae, Umbilicariomycetidae; and one provisionarily recognized, 'Candelariomycetidae'). Maximum likelihood phylogenetic analyses on four multigene datasets assembled using a cumulative supermatrix approach with a progressively higher number of species and missing data (5-gene, 5+4-gene, 5+4+3-gene and 5+4+3+2-gene datasets) show that the current classification includes non-monophyletic taxa at various ranks, which need to be recircumscribed and require revisionary treatments based on denser taxon sampling and more loci. Two newly circumscribed orders (Arctomiales and Hymeneliales in the Ostropomycetidae) and three families (Ramboldiaceae and Psilolechiaceae in the Lecanorales, and Strangosporaceae in the Lecanoromycetes inc. sed.) are introduced. The potential resurrection of the families Eigleraceae and Lopadiaceae is considered here to alleviate phylogenetic and classification disparities. An overview of the photobionts associated with the main fungal lineages in the Lecanoromycetes based on available published records is provided. A revised schematic classification at the family level in the phylogenetic context of widely accepted and newly revealed relationships across Lecanoromycetes is included. The cumulative addition of taxa with an increasing amount of missing data (i.e., a cumulative supermatrix approach, starting with taxa for which sequences were available for all five targeted genes and ending with the addition of taxa for which only two genes have been sequenced) revealed relatively stable relationships for many families and orders. However, the increasing number of taxa without the addition of more loci also resulted in an expected substantial loss of phylogenetic resolving power and support (especially for deep phylogenetic relationships), potentially including the misplacements of several taxa. Future phylogenetic analyses should include additional single copy protein-coding markers in order to improve the tree of the Lecanoromycetes. As part of this study, a new module ("Hypha") of the freely available Mesquite software was developed to compare and display the internodal support values derived from this cumulative supermatrix approach.


Subject(s)
Ascomycota/classification , Phylogeny , Ascomycota/genetics , Cell Nucleus/genetics , Genes, Fungal , Genes, Mitochondrial , Likelihood Functions , Models, Genetic , RNA, Ribosomal/genetics , Sequence Alignment , Sequence Analysis, DNA , Software
8.
Mol Phylogenet Evol ; 63(2): 374-87, 2012 May.
Article in English | MEDLINE | ID: mdl-22306043

ABSTRACT

The resolution of the phylogenetic relationships within the order Teloschistales (Ascomycota, lichen-forming-fungi), with nearly 2000 known species and outstanding phenotypic diversity, has been hindered by the limitation in the resolving power that single-locus or two-locus phylogenetic studies have provided to date. In this context, an extensive taxon sampling within the Teloschistales with more loci (especially nuclear protein-coding genes) was needed to confront the current taxonomic delimitations and to understand evolutionary trends within this order. Comprehensive maximum likelihood and bayesian analyses were performed based on seven loci using a cumulative supermatrix approach, including protein-coding genes RPB1 and RPB2 in addition to nuclear and mitochondrial ribosomal RNA-coding genes. We included 167 taxa representing 12 of the 15 genera recognized within the currently accepted Teloschistineae, 22 of the 43 genera within the Physciineae, 49 genera of the closely related orders Lecanorales, Lecideales, and Peltigerales, and the dubiously placed family Brigantiaeaceae and genus Sipmaniella. Although the progressive addition of taxa (cumulative supermatrix approach) with increasing amounts of missing data did not dramatically affect the loss of support and resolution, the monophyly of the Teloschistales in the current sense was inconsistent, depending on the loci-taxa combination analyzed. Therefore, we propose a new, but provisional, classification for the re-circumscribed orders Caliciales and Teloschistales (previously referred to as Physciineae and Teloschistineae, respectively). We report here that the family Brigantiaeaceae, previously regarded as incertae sedis within the subclass Lecanoromycetidae, and Sipmaniella, are members of the Teloschistales in a strict sense. Within this order, one lineage led to the diversification of the mostly epiphytic crustose Brigantiaeaceae and Letrouitiaceae, with a circumpacific center of diversity and found mostly in the tropics. The other main lineage led to another epiphytic crustose family, mostly tropical, and with an Australasian center of diversity--the Megalosporaceae--which is sister to the mainly rock-inhabiting, cosmopolitan, and species rich Teloschistaceae, with a diversity of growth habits ranging from crustose to fruticose. Our results confirm the use of a cumulative supermatrix approach as a viable method to generate comprehensive phylogenies summarizing relationships of taxa with multi-locus to single locus data.


Subject(s)
Ascomycota/classification , Ascomycota/genetics , Phylogeny , Base Sequence , Genetic Variation , Mitochondria/genetics , Molecular Sequence Data , RNA/genetics , RNA Polymerase II/genetics , RNA, Fungal/genetics , RNA, Mitochondrial , RNA, Ribosomal/genetics , Sequence Alignment , Sequence Analysis, DNA
9.
Mycologia ; 103(4): 755-63, 2011.
Article in English | MEDLINE | ID: mdl-21471292

ABSTRACT

The monotypic, lichen-forming genus Ingvariella originally was segregated from Diploschistes and placed within the Thelotremataceae (Ostropales) based on aspects of exciple morphology. However, the I+ hymenium and amyloid ascus wall suggest affinities to families other than the Thelotremataceae. To assess the identity of Ingvariella and to investigate its placement within the Ostropales, we inferred phylogenetic relationships of I. bispora by comparison of mtSSU rDNA and nuLSU rDNA sequences for 59 species encompassing a broad array of ostropalean fungi by means of Bayesian, maximum likelihood and weighted maximum parsimony methods. Here we report that Ingvariella is a member of the Stictidaceae, sister to the mainly saprotrophic genus Cryptodiscus. The inclusion of the first saxicolous lichen-forming fungus within this family expands the broad ecological diversity of the Stictidaceae, where saprotrophic fungi, corticicolous lichen-forming fungi and lichenized and non-lichenized conspecific taxa have been described previously. We also present new insights into the relationships among other families within the Ostropales.


Subject(s)
Ascomycota/classification , Lichens/classification , Ascomycota/cytology , Ascomycota/genetics , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Lichens/cytology , Lichens/genetics , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...