Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Phytopathology ; : PHYTO12230491R, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-38976565

ABSTRACT

Epidemiological studies to better understand wheat blast (WB) spatial and temporal patterns were conducted in three field environments in Bolivia between 2019 and 2020. The temporal dynamics of wheat leaf blast (WLB) and spike blast (WSB) were best described by the logistic model compared with the Gompertz and exponential models. The nonlinear logistic infection rates were higher under defined inoculation in experiments two and three than under undefined inoculation in experiment one, and they were also higher for WSB than for WLB. The onset of WLB began with a spatial clustering pattern according to autocorrelation analysis and Moran's index values, with higher severity and earlier onset for defined than for undefined inoculation until the last sampling time. The WSB onset did not start with a spatial clustering pattern; instead, it was detected later until the last sampling date across experiments, with higher severity and earlier onset for defined than for undefined inoculation. Maximum severity (Kmax) was 1.0 for WSB and less than 1.0 for WLB. Aggregation of WLB and WSB was higher for defined than for undefined inoculation. The directionality of hotspot development was similar for both WLB and WSB, mainly occurring concentrically for defined inoculation. Our results show no evidence of synchronized development but suggest a temporal and spatial progression of disease symptoms on wheat leaves and spikes. Thus, we recommend that monitoring and management of WB should be considered during early growth stages of wheat planted in areas of high risk.

SELECTION OF CITATIONS
SEARCH DETAIL