Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921024

ABSTRACT

Hydrogen recovery is at the center of the energy transition guidelines promoted by governments, owing to its applicability as an energy resource, but calls for energetically nonintensive recovery methods. The employment of polymeric membranes in selective gas separations has arisen as a potential alternative, as its established commercial availability demonstrates. However, enhanced features need to be developed to achieve adequate mechanical properties and the membrane performance that allows the obtention of hydrogen with the required industrial purity. Matrimid®, as a polyimide, is an attractive material providing relatively good performance to selectively recover hydrogen. As a consequence, this review aims to study and summarize the main results, mechanisms involved and advances in the use of Matrimid® as a selective material for hydrogen separation to date, delving into membrane fabrication procedures that increase the effectiveness of hydrogen recovery, i.e., the addition of fillers (within which ZIFs have acquired extraordinary importance), chemical crosslinking or polymeric blending, among others.

2.
Chemosphere ; 161: 136-144, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27424055

ABSTRACT

The formation of chlorinated and non-chlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) has been experimentally investigated after the Fenton oxidation of 2-chlorophenol (2-CP, 15.56 mM) aqueous solutions by assessing the influence of iron concentration (0.09-2.88 mM), hydrogen peroxide dose (40.44-202.20 mM), temperature (20-70 °C) and chloride concentration (0-56.35 mM). The presence of chloride in the medium together with room temperature and substoichiometric Fenton conditions (40.44 mM H2O2) led to an increase in total PCDD/Fs concentration from less than 1 ng L(-1) to 2 µg L(-1). Results showed a dominance of the dichlorinated species (DCDD/Fs) in the homologue profile of total PCDD/Fs reaching values up to 1.5 µg L(-1). Furthermore, the products distribution exhibited a gradual decrease in the homologue concentration as the chlorination degree increased from di-to octachloro-substituted positions. Considering the characteristics of the reaction medium, the experimental results, and the information gathered in bibliography with regard to the generation of active radicals from 2-chlorophenol, a mechanism describing the formation of low chlorinated PCDD/Fs in a Fenton oxidizing aqueous system has been proposed.


Subject(s)
Chlorophenols/chemistry , Dibenzofurans, Polychlorinated/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Models, Chemical , Polychlorinated Dibenzodioxins/chemistry , Benzofurans , Halogenation , Oxidation-Reduction , Solutions , Temperature
3.
Chemosphere ; 137: 135-41, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26134538

ABSTRACT

Toxic polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) may be formed during remediation of chlorinated phenols via Fenton oxidation. To highlight the need for monitoring the production of toxic byproducts in these reactions, this work assessed the influence of iron dose (0.09-0.36 mM) on the Fenton oxidation of 2-chlorophenol (2-CP, 15.56 mM), a potential precursor of PCDD/Fs, by quantifying 2-CP removal and mineralization rates as well as byproducts yields, including PCDD/Fs. Although the increase in the iron dose showed positive contribution to 2-CP oxidation, under the operating conditions of the current study (H2O2 at 20% of the stoichiometric dose and 20 °C), there was no effect on the mineralization rate, and TOC and chlorine balances were far to be closed, depicting the presence of chlorinated organic byproducts in the reaction medium. After 4 h of treatment, the total PCDD/Fs concentrations increased by 14.5-39 times related to the untreated sample when the iron doses tested decreased from 0.36 to 0.09 mM, with preferential formation of PCDFs over PCDDs and dominance of lower chlorinated congeners such as tetra and penta-PCDD/Fs. The treatment with the highest iron dose (0.36 mM) exhibited the lowest PCDD/Fs yields and was thus most successful at mitigating toxic byproducts of the Fenton oxidation, leading to lower sample toxic equivalence (TEQ) value.


Subject(s)
Benzofurans/analysis , Chlorophenols/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Polychlorinated Dibenzodioxins/analogs & derivatives , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Benzofurans/chemistry , Dibenzofurans, Polychlorinated , Oxidation-Reduction , Polychlorinated Dibenzodioxins/analysis , Polychlorinated Dibenzodioxins/chemistry , Water Pollutants, Chemical/chemistry , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL