Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 92(10): 103705, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34717388

ABSTRACT

A Scanning Tunneling Microscope (STM) is one of the most important scanning probe tools available to study and manipulate matter at the nanoscale. In a STM, a tip is scanned on top of a surface with a separation of a few Å. Often, the tunneling current between the tip and the sample is maintained constant by modifying the distance between the tip apex and the surface through a feedback mechanism acting on a piezoelectric transducer. This produces very detailed images of the electronic properties of the surface. The feedback mechanism is nearly always made using a digital processing circuit separate from the user computer. Here, we discuss another approach using a computer and data acquisition through the universal serial bus port. We find that it allows successful ultralow noise studies of surfaces at cryogenic temperatures. We show results on different compounds including a type II Weyl semimetal (WTe2), a quasi-two-dimensional dichalcogenide superconductor (2H-NbSe2), a magnetic Weyl semimetal (Co3Sn2S2), and an iron pnictide superconductor (FeSe).

2.
Rev Sci Instrum ; 92(9): 093701, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34598511

ABSTRACT

We describe a scanning tunneling microscope (STM) that operates at magnetic fields up to 22 T and temperatures down to 80 mK. We discuss the design of the STM head, with an improved coarse approach, the vibration isolation system, and efforts to improve the energy resolution using compact filters for multiple lines. We measure the superconducting gap and Josephson effect in aluminum and show that we can resolve features in the density of states as small as 8 µeV. We measure the quantization of conductance in atomic size contacts and make atomic resolution and density of states images in the layered material 2H-NbSe2. The latter experiments are performed by continuously operating the STM at magnetic fields of 20 T in periods of several days without interruption.

3.
J Phys Condens Matter ; 33(14)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33445159

ABSTRACT

The magnetoresistance (MR) of iron pnictide superconductors is often dominated by electron-electron correlations and deviates from theH2or saturating behaviors expected for uncorrelated metals. Contrary to similar Fe-based pnictide systems, the superconductor LaRu2P2(Tc= 4 K) shows no enhancement of electron-electron correlations. Here we report a non-saturating MR deviating from theH2or saturating behaviors in LaRu2P2. We present results in single crystals of LaRu2P2, where we observe a MR followingH1.3up to 22 T. We discuss our result by comparing the bandstructure of LaRu2P2with that of Fe based pnictide superconductors. The different orbital structures of Fe and Ru leads to a 3D Fermi surface with negligible bandwidth renormalization in LaRu2P2, that contains a large open sheet over the whole Brillouin zone. We show that the large MR in LaRu2P2is unrelated to the one obtained in materials with strong electron-electron correlations and that it is compatible instead with conduction due to open orbits on the rather complex Fermi surface structure of LaRu2P2.

SELECTION OF CITATIONS
SEARCH DETAIL
...