Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; 12(12): e0032723, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37943036

ABSTRACT

Genome sequencing of highly virulent Salmonella enterica subsp. enterica serovar Javiana strain FARPER-220 (ST-1674) isolated from broiler chickens in Peru revealed multiple virulence factors, antibiotic resistance genes, and invasion-related subcategories. The results provide insights into the potential importance of this strain in causing infections in various animals.

2.
Microbiol Resour Announc ; 12(6): e0019923, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37125942

ABSTRACT

Surveillance helps us identify and monitor strains with zoonotic potential. A tracheal swab from a pelican on a Peruvian beach was H5N1 positive (clade 2.3.4.4b) using Oxford Nanopore's MinION platform. The near-complete genome sequence of strain VFAR-140 will aid us in understanding avian influenza epidemiology and spread.

3.
Microbiol Resour Announc ; 12(2): e0129322, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36719208

ABSTRACT

This study presents a draft genome sequence of a Newcastle disease virus (NDV) strain (VFAR-136) isolated from a fighting cock (Gallus gallus) in the south of Peru. Strain VFAR-136 is a new report of NDV genotype VII circulating in Peru.

4.
PLoS One ; 17(8): e0269823, 2022.
Article in English | MEDLINE | ID: mdl-35998134

ABSTRACT

COVID-19 pandemic has accelerated the development of vaccines against its etiologic agent, SARS-CoV-2. However, the emergence of new variants of the virus lead to the generation of new alternatives to improve the current sub-unit vaccines in development. In the present report, the immunogenicity of the Spike RBD of SARS-CoV-2 formulated with an oil-in-water emulsion and a water-in-oil emulsion with squalene was evaluated in mice and hamsters. The RBD protein was expressed in insect cells and purified by chromatography until >95% purity. The protein was shown to have the appropriate folding as determined by ELISA and flow cytometry binding assays to its receptor, as well as by its detection by hamster immune anti-S1 sera under non-reducing conditions. In immunization assays, although the cellular immune response elicited by both adjuvants were similar, the formulation based in water-in-oil emulsion and squalene generated an earlier humoral response as determined by ELISA. Similarly, this formulation was able to stimulate neutralizing antibodies in hamsters. The vaccine candidate was shown to be safe, as demonstrated by the histopathological analysis in lungs, liver and kidney. These results have shown the potential of this formulation vaccine to be evaluated in a challenge against SARS-CoV-2 and determine its ability to confer protection.


Subject(s)
COVID-19 , Viral Vaccines , Adjuvants, Immunologic , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Cricetinae , Emulsions , Humans , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Models, Animal , Pandemics/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Squalene , Water
5.
Sci Rep ; 12(1): 10359, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725862

ABSTRACT

The coronavirus disease-19 (COVID-19) pandemic has already claimed millions of lives and remains one of the major catastrophes in the recorded history. While mitigation and control strategies provide short term solutions, vaccines play critical roles in long term control of the disease. Recent emergence of potentially vaccine-resistant and novel variants necessitated testing and deployment of novel technologies that are safe, effective, stable, easy to administer, and inexpensive to produce. Here we developed three recombinant Newcastle disease virus (rNDV) vectored vaccines and assessed their immunogenicity, safety, and protective efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice and hamsters. Intranasal administration of rNDV-based vaccine candidates elicited high levels of neutralizing antibodies. Importantly, the nasally administrated vaccine prevented lung damage, and significantly reduced viral load in the respiratory tract of vaccinated animal which was compounded by profound humoral immune responses. Taken together, the presented NDV-based vaccine candidates fully protected animals against SARS-CoV-2 challenge and warrants evaluation in a Phase I human clinical trial as a promising tool in the fight against COVID-19.


Subject(s)
COVID-19 , Viral Vaccines , Administration, Intranasal , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Cricetinae , Mice , Newcastle disease virus/genetics , SARS-CoV-2/genetics , Vaccination , Vaccines, Synthetic/genetics
6.
Viruses ; 14(4)2022 04 11.
Article in English | MEDLINE | ID: mdl-35458523

ABSTRACT

In this study, we developed a new recombinant virus rHVT-F using a Turkey herpesvirus (HVT) vector, expressing the fusion (F) protein of the genotype XII Newcastle disease virus (NDV) circulating in Peru. We evaluated the viral shedding and efficacy against the NDV genotype XII challenge in specific pathogen-free (SPF) chickens. The F protein expression cassette was inserted in the unique long (UL) UL45-UL46 intergenic locus of the HVT genome by utilizing a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 gene-editing technology via a non-homologous end joining (NHEJ) repair pathway. The rHVT-F virus, which expressed the F protein stably in vitro and in vivo, showed similar growth kinetics to the wild-type HVT (wtHVT) virus. The F protein expression of the rHVT-F virus was detected by an indirect immunofluorescence assay (IFA), Western blotting, and a flow cytometry assay. The presence of an NDV-specific IgY antibody was detected in serum samples by an enzyme-linked immunosorbent assay (ELISA) in SPF chickens vaccinated with the rHVT-F virus. In the challenge experiment, the rHVT-F vaccine fully protects a high, and significantly reduced, virus shedding in oral at 5 days post-challenge (dpc). In conclusion, this new rHVT-F vaccine candidate is capable of fully protecting SPF chickens against the genotype XII challenge.


Subject(s)
Herpesvirus 2, Gallid , Newcastle Disease , Poultry Diseases , Viral Vaccines , Animals , Antibodies, Viral , CRISPR-Cas Systems , Chickens , Genotype , Herpesvirus 1, Meleagrid/genetics , Integrases , Newcastle Disease/prevention & control , Newcastle disease virus/genetics , Vaccines, Synthetic/genetics , Viral Vaccines/genetics
7.
BMC Vet Res ; 16(1): 230, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32631319

ABSTRACT

BACKGROUND: In the poultry industry, quantitative analysis of chicken T cell proliferation is important in many biological applications such as drug screening, vaccine production, and cytotoxicity assessment. Several assays have been established to evaluate this immunological response in chicken cells. However, these assays have some disadvantages including use of radioactive labels ([3H]-Thymidine assay), necessity of DNA denaturation or digestion (BrdU incorporation assay), lack of sensitivity and underestimation of anti-proliferative effects (MTT assay), and modulation of activation molecules and cell viability reduction (CFSE assay). Overcoming these limitations, the EdU proliferation assay is sensitive and advantageous compared to [3H]-Thymidine radioactive labels in studies on cell proliferation in vitro and allows simultaneous identification of T cell populations. However, this assay has not been established using primary chicken cells to evaluate T cell proliferation by flow cytometry. RESULTS: Here, we established an assay to evaluate the proliferation of primary chicken splenocytes based on the incorporation of a thymidine analog (EdU) and a click reaction with a fluorescent azide, detected by a flow cytometer. We also established a protocol that combines EdU incorporation and immunostaining to detect CD4+ and CD8+ proliferating T cells. By inducing cell proliferation with increasing concentrations of a mitogen (Concanavalin A), we observed a linear increase in EdU positive cells, indicating that our protocol does not present any deficiency in the quantity and quality of reagents that were used to perform the click reaction. CONCLUSIONS: In summary, we established a reliable protocol to evaluate the proliferation of CD4+ and CD8+ chicken T cells by flow cytometry. Moreover, as this is an in-house protocol, the cost per sample using this protocol is low, allowing its implementation in laboratories that process a large number of samples.


Subject(s)
Chickens , Flow Cytometry/veterinary , T-Lymphocytes/cytology , Animals , Cell Proliferation , Flow Cytometry/methods , Flow Cytometry/standards , Thymidine/analogs & derivatives , Thymidine/chemistry
8.
Microbiol Resour Announc ; 8(49)2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31806744

ABSTRACT

Here, we report a draft genome sequence of Aeromonas veronii strain CTe-01 (4.5 Mb), a hemolytic, heavy metal-resistant bacterium isolated from a wastewater treatment plant located at Cachiche, Ica, Peru. These characteristics could be used for bioremediation of contaminated environments.

9.
Microbiol Resour Announc ; 8(43)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31649094

ABSTRACT

This report shows the whole-genome sequence of the multidrug-resistant Salmonella enterica subsp. enterica serovar Infantis strain FARPER-219. Antibiotic resistance genes are found mainly in the plasmid. Our findings show important genetic information that provides an understanding of the recent spread of this serotype in poultry.

10.
Microbiol Resour Announc ; 8(16)2019 Apr 18.
Article in English | MEDLINE | ID: mdl-31000542

ABSTRACT

Here, we report the full-genome sequence of an NAD-hemin-independent Avibacterium paragallinarum serovar C-2 strain, FARPER-174, isolated from layer hens in Peru. This genome contained 12 potential genomic islands that include ribosomal protein-coding genes, a nadR gene, hemocin-coding genes, sequences of fagos, an rtx operon, and drug resistance genes.

11.
Article in English | MEDLINE | ID: mdl-30533768

ABSTRACT

Here, we report the whole-genome sequence of Sphingomonas sp. strain FARSPH, isolated from an insect cell line as a contaminant. FARSPH shared high identity with Sphingomonas melonis and Sphingomonas aquatilis strains. Due to this finding, we recommend taking this genus into consideration for cell culture quality control.

12.
Bioinformation ; 9(10): 528-36, 2013.
Article in English | MEDLINE | ID: mdl-23861570

ABSTRACT

BACKGROUND: Avibacterium paragallinarum, the causative agent of infectious coryza, is a highly contagious respiratory acute disease of poultry, which affects commercial chickens, laying hens and broilers worldwide. METHODOLOGY: In this study, we performed the whole genome sequencing, assembly and annotation of a Peruvian isolate of A. paragallinarum. Genome was sequenced in a 454 GS FLX Titanium system. De novo assembly was performed and annotation was completed with GS De Novo Assembler 2.6 using the H. influenzae str. F3031 gene model. Manual curation of the genome was performed with Artemis. Putative function of genes was predicted with Blast2GO. Virulence factors were identified by comparison with the Virulence Factor Database. RESULTS: The genome obtained has a length of 2.47 Mb with 40.66% of GC content. Seventy five large contigs (>500 nt) were obtained, which comprised 1,204 predicted genes. All the contigs are available in Genbank [GenBank: PRJNA64665]. A total of 103 virulence factors, reported in the Virulence Factor Database, were found in A. paragallinarum. Forty four of them are present in 7 species of Haemophilus, which are related with pathogenesis, virulence and host immune system evasion. A tetracycline-resistance associated transposon (Tn10), was found in A. paragallinarum, possibly acting as a defense mechanism. DISCUSSION AND CONCLUSION: The availability of A. paragallinarum genome represents an important source of information for the development of diagnostic tests, genotyping, and novel antigens for potential vaccines against infectious coryza. Identification of virulence factors contributes to better understanding the pathogenesis, and planning efforts for prevention and control of the disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...