Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2796: 157-184, 2024.
Article in English | MEDLINE | ID: mdl-38856901

ABSTRACT

Kir channels are potassium (K+) channels responsible for the mechanism of inward rectification, which plays a fundamental role in maintaining the resting membrane potential. There are seven Kir subfamilies, and their opening and closing mechanism is regulated by different regulatory factors. Genetically inherited defects in Kir channels are responsible for several rare human diseases, and for most of them, there are currently no effective therapeutic treatments. High-resolution structural information is not available for several members within the Kir subfamilies. Recently, our group achieved a significant breakthrough by utilizing cryo-EM single-particle analysis to elucidate the first structure of the human Kir2.1 channel. We present here the data processing protocol of the cryo-EM data of the human Kir2.1 channel, which is applicable to the structural determination of other ion channels by cryo-EM single-particle analysis. We also introduce a protocol designed to assess the structural heterogeneity within the cryo-EM data, allowing for the identification of other possible protein structure conformations present in the collected data. Moreover, we present a protocol for conducting all-atom molecular dynamics (MD) simulations for K+ channels, which can be incorporated into various membrane models to simulate different environments. We also propose some methods for analyzing the MD simulations, with a particular emphasis on assessing the local mobility of protein residues.


Subject(s)
Cryoelectron Microscopy , Molecular Dynamics Simulation , Potassium Channels, Inwardly Rectifying , Cryoelectron Microscopy/methods , Potassium Channels, Inwardly Rectifying/chemistry , Potassium Channels, Inwardly Rectifying/metabolism , Humans , Protein Conformation
2.
Biochimie ; 218: 46-56, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37659716

ABSTRACT

In accidents involving Crotalus snakes, the crotoxin complex (CTX) plays lethal action due to its neurotoxic activity. On the other hand, CTX have potential biotechnological application due to its anti-tumoral, anti-inflammatory, antimicrobial, analgesic and immunomodulatory properties. CTX is a heterodimer composed of Crotoxin A (CA or crotapotin), the acidic nontoxic and non-enzymatic component and; Crotoxin B (CB), a basic, toxic and catalytic PLA2. Currently, there are two classes of CTX isoforms, whose differences in their biological activities have been attributed to features presented in CB isoforms. Here, we present the crystal structure of CB isolated from the Crotalus durissus collilineatus venom. It amino acid sequence was assigned using the SEQUENCE SLIDER software, which revealed that the crystal structure is a heterodimer composed of two new CB isoforms (colCB-A and colCB-B). Bioinformatic and biophysical analyses showed that the toxin forms a tetrameric assembly in solution similar to CB from Crotalus durissus terrificus venom, despite some differences observed at the dimeric interface. By the previously proposed classification, the colCB-B presents features of the class I isoforms while colCB-A cannot be classified into classes I and II based on its amino acid sequence. Due to similar features observed for other CB isoforms found in the NCBI database and the results obtained for colCB-A, we suggest that there are more than two classes of CTX and CB isoforms in crotalic venoms.


Subject(s)
Crotalid Venoms , Crotoxin , Venomous Snakes , Animals , Crotoxin/chemistry , Phospholipases A2/chemistry , Crotalus/metabolism , Crotalid Venoms/chemistry , Protein Isoforms/metabolism
3.
Int J Mol Sci ; 24(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37834233

ABSTRACT

Single-particle cryo-electron microscopy (cryo-EM SPA) has recently emerged as an exceptionally well-suited technique for determining the structure of membrane proteins (MPs). Indeed, in recent years, huge increase in the number of MPs solved via cryo-EM SPA at a resolution better than 3.0 Å in the Protein Data Bank (PDB) has been observed. However, sample preparation remains a significant challenge in the field. Here, we evaluated the MPs solved using cryo-EM SPA deposited in the PDB in the last two years at a resolution below 3.0 Å. The most critical parameters for sample preparation are as follows: (i) the surfactant used for protein extraction from the membrane, (ii) the surfactant, amphiphiles, nanodiscs or other molecules present in the vitrification step, (iii) the vitrification method employed, and (iv) the type of grids used. The aim is not to provide a definitive answer on the optimal sample conditions for cryo-EM SPA of MPs but rather assess the current trends in the MP structural biology community towards obtaining high-resolution cryo-EM structures.


Subject(s)
Membrane Proteins , Specimen Handling , Membrane Proteins/chemistry , Cryoelectron Microscopy/methods , Specimen Handling/methods , Single Molecule Imaging , Surface-Active Agents
4.
Sci Adv ; 8(38): eabq8489, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36149965

ABSTRACT

We present the first structure of the human Kir2.1 channel containing both transmembrane domain (TMD) and cytoplasmic domain (CTD). Kir2.1 channels are strongly inward-rectifying potassium channels that play a key role in maintaining resting membrane potential. Their gating is modulated by phosphatidylinositol 4,5-bisphosphate (PIP2). Genetically inherited defects in Kir2.1 channels are responsible for several rare human diseases, including Andersen's syndrome. The structural analysis (cryo-electron microscopy), surface plasmon resonance, and electrophysiological experiments revealed a well-connected network of interactions between the PIP2-binding site and the G-loop through residues R312 and H221. In addition, molecular dynamics simulations and normal mode analysis showed the intrinsic tendency of the CTD to tether to the TMD and a movement of the secondary anionic binding site to the membrane even without PIP2. Our results revealed structural features unique to human Kir2.1 and provided insights into the connection between G-loop and gating and the pathological mechanisms associated with this channel.


Subject(s)
Molecular Dynamics Simulation , Phosphatidylinositols , Potassium Channels, Inwardly Rectifying , Cryoelectron Microscopy , Humans , Membrane Potentials , Potassium Channels, Inwardly Rectifying/chemistry
5.
Int J Biol Macromol ; 185: 494-512, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34197854

ABSTRACT

Snakebite envenoming is the cause of an ongoing health crisis in several regions of the world, particularly in tropical and neotropical countries. This scenario creates an urgent necessity for new practical solutions to address the limitations of current therapies. The current study investigated the isolation, phytochemical characterization, and myotoxicity inhibition mechanism of gallic acid (GA), a myotoxin inhibitor obtained from Anacardium humile. The identification and isolation of GA was achieved by employing analytical chromatographic separation, which exhibited a compound with retention time and nuclear magnetic resonance spectra compatible with GA's commercial standard and data from the literature. GA alone was able to inhibit the myotoxic activity induced by the crude venom of Bothrops jararacussu and its two main myotoxins, BthTX-I and BthTX-II. Circular dichroism (CD), fluorescence spectroscopy (FS), dynamic light scattering (DLS), and interaction studies by molecular docking suggested that GA forms a complex with BthTX-I and II. Surface plasmon resonance (SPR) kinetics assays showed that GA has a high affinity for BthTX-I with a KD of 9.146 × 10-7 M. Taken together, the two-state reaction mode of GA binding to BthTX-I, and CD, FS and DLS assays, suggest that GA is able to induce oligomerization and secondary structure changes for BthTX-I and -II. GA and other tannins have been shown to be effective inhibitors of snake venoms' toxic effects, and herein we demonstrated GA's ability to bind to and inhibit a snake venom PLA2, thus proposing a new mechanism of PLA2 inhibition, and presenting more evidence of GA's potential as an antivenom compound.


Subject(s)
Anacardium/chemistry , Gallic Acid/pharmacology , Myotoxicity/drug therapy , Phospholipase A2 Inhibitors/pharmacology , Phospholipases A2/metabolism , Snake Venoms/enzymology , Animals , Disease Models, Animal , Gallic Acid/chemistry , Gene Expression Regulation, Enzymologic/drug effects , Male , Mice , Myotoxicity/enzymology , Myotoxicity/etiology , Phospholipase A2 Inhibitors/chemistry , Phospholipases A2/chemistry , Plant Stems/chemistry , Reptilian Proteins/chemistry , Reptilian Proteins/metabolism , Surface Plasmon Resonance
6.
Methods Mol Biol ; 2281: 169-191, 2021.
Article in English | MEDLINE | ID: mdl-33847958

ABSTRACT

RPA is a conserved heterotrimeric complex and the major single-stranded DNA (ssDNA)-binding protein heterotrimeric complex, which in eukaryotes is formed by the RPA-1, RPA-2, and RPA-3 subunits. The main structural feature of RPA is the presence of the oligonucleotide/oligosaccharide-binding fold (OB-fold) domains, responsible for ssDNA binding and protein:protein interactions. Among the RPA subunits, RPA-1 bears three of the four OB folds involved with RPA-ssDNA binding, although in some organisms RPA-2 can also bind ssDNA. The OB-fold domains are also present in telomere end-binding proteins (TEBP), essential for chromosome end protection. RPA-1 from Leishmania sp., as well as RPA-1 from trypanosomatids, a group of early-divergent protozoa, shows some structural differences compared to higher eukaryote RPA-1. Also, RPA-1 from Leishmania sp., similar to TEBPs, may exert telomeric protective functions. Remarkably, different pieces of evidence have pointed out that trypanosomatids may not have OB fold-containing TEBPs. Moreover, recent data indicate that trypanosomatid RPA-1 may be considered a TEBP since it shares with TEBPs conserved functional and structural features. However, it is still unknown whether the RPA-1 protective telomeric role is exclusive to trypanosomatids or is also present in other primitive eukaryotes. Here, we describe a protocol to obtain highly purified and biologically active Leishmania amazonensis recombinant RPA-1, and to perform molecular modeling and molecular dynamics simulations methods which could be probably applied to functional and structural studies of homologous proteins in other primitive eukaryotes.


Subject(s)
Leishmania/metabolism , Replication Protein A/chemistry , Replication Protein A/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Folding , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Replication Protein A/genetics
7.
Toxicon X ; 7: 100049, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32613196

ABSTRACT

A bioactive compound isolated from the stem extract of Aristolochia sprucei through High Performance Liquid Chromatography (HPLC) was identified via Nuclear Magnetic Resonance (NMR) as the aristolochic acid (AA). This compound showed an inhibitory effect over the myotoxic activity of Bothrops jararacussu and Bothrops asper venoms, being also effective against the indirect hemolytic activity of B. asper venom. Besides, AA also inhibited the myotoxic activity of BthTX-I and MTX-II with an efficiency greater than 60% against both myotoxins. Docking predictions revealed an interesting mechanism, through which the AA displays an interaction profile consistent with its inhibiting abilities, binding to both active and putative sites of svPLA2. Overall, the present findings indicate that AA may bind to critical regions of myotoxic Asp 49 and Lys49-PLA2s from snake venoms, highlighting the relevance of domains comprising the active and putative sites to inhibit these toxins.

8.
Biochim Biophys Acta Gen Subj ; 1864(7): 129607, 2020 07.
Article in English | MEDLINE | ID: mdl-32222548

ABSTRACT

BACKGROUND: Telomeres are chromosome end structures important in the maintenance of genome homeostasis. They are replenished by the action of telomerase and associated proteins, such as the OB (oligonucleotide/oligosaccharide-binding)-fold containing telomere-end binding proteins (TEBP) which plays an essential role in telomere maintenance and protection. The nature of TEBPs is well known in higher and some primitive eukaryotes, but it remains undetermined in trypanosomatids. Previous in silico searches have shown that there are no homologs of the classical TEPBs in trypanosomatids, including Leishmania sp. However, Replication Protein A subunit 1 (RPA-1), an OB-fold containing DNA-binding protein, was found co-localized with trypanosomatids telomeres and showed a high preference for the telomeric G-rich strand. METHODS AND RESULTS: We predicted the absence of structural homologs of OB-fold containing TEBPs in the Leishmania sp. genome using structural comparisons. We demonstrated by molecular docking that the ssDNA binding mode of LaRPA-1 shares features with the higher eukaryotes POT1 and RPA-1 crystal structures ssDNA binding mode. Using fluorescence spectroscopy, protein-DNA interaction assays, and FRET, we respectively show that LaRPA-1 shares some telomeric functions with the classical TEBPs since it can bind at least one telomeric repeat, protect the telomeric G-rich DNA from 3'-5' Exonuclease I digestion, and unfold telomeric G-quadruplex. CONCLUSIONS: Our results suggest that RPA-1 emerges as a TEBP in trypanosomatids, and in this context, we present two possible evolutionary landscapes of trypanosomatids RPA-1 that could reflect upon the evolution of OB-fold containing TEBPs from all eukaryotes.


Subject(s)
Leishmania , Telomere-Binding Proteins , DNA , Leishmania/genetics , Molecular Docking Simulation , Replication Protein A/chemistry , Replication Protein A/genetics , Replication Protein A/metabolism , Telomere/genetics , Telomere/metabolism , Telomere-Binding Proteins/chemistry , Telomere-Binding Proteins/genetics
9.
FEBS Lett ; 594(10): 1596-1607, 2020 05.
Article in English | MEDLINE | ID: mdl-32052428

ABSTRACT

Replication protein A (RPA), a heterotrimeric complex, is the major single-stranded DNA binding protein in eukaryotes. Recently, we characterized RPA from Trypanosoma cruzi, showing that it is involved in DNA replication and DNA damage response in this organism. Better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms was observed in TcRPA-2 subunit heterozygous knockout cells, suggesting that RPA is involved in this process. Here, we show that RPA cellular localization changes during the T. cruzi life cycle, with RPA being detected only in the cytoplasm of the metacyclic and bloodstream trypomastigotes. We also identify a nuclear export signal (NES) in the trypanosomatid RPA-2 subunit. Mutations in the negatively charged residues of RPA-2 NES impair the differentiation process, suggesting that RPA exportation affects parasite differentiation into infective forms.


Subject(s)
Cell Nucleus/metabolism , Life Cycle Stages , Morphogenesis , Replication Protein A/metabolism , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Animals , Chagas Disease/blood , Chagas Disease/parasitology , Computer Simulation , Cytoplasm/metabolism , Morphogenesis/genetics , Nuclear Export Signals/genetics , Nuclear Export Signals/physiology , Replication Protein A/genetics , Trypanosoma cruzi/cytology
10.
FEBS Lett. ; 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17449

ABSTRACT

Replication Protein A (RPA), a heterotrimeric complex, is the major single-stranded DNA-binding protein in eukaryotes. Recently, we characterized RPA from Trypanosoma cruzi, showing that it is involved in DNA replication and DNA damage response in this organism. Better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms was observed in TcRPA-2 subunit heterozygous knockout cells, suggesting that RPA is involved in this process. Here, we show that RPA cellular localization changes during the T. cruzi life cycle, with RPA being detected only in the cytoplasm of the metacyclic and bloodstream trypomastigotes. We also identify a Nuclear Export Signal (NES) in the trypanosomatid RPA-2 subunit. Mutations in the negatively charged residues of RPA-2 NES impair the differentiation process, suggesting that RPA exportation affects parasite differentiation into infective forms.

11.
FEBS Lett, fev. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2945

ABSTRACT

Replication Protein A (RPA), a heterotrimeric complex, is the major single-stranded DNA-binding protein in eukaryotes. Recently, we characterized RPA from Trypanosoma cruzi, showing that it is involved in DNA replication and DNA damage response in this organism. Better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms was observed in TcRPA-2 subunit heterozygous knockout cells, suggesting that RPA is involved in this process. Here, we show that RPA cellular localization changes during the T. cruzi life cycle, with RPA being detected only in the cytoplasm of the metacyclic and bloodstream trypomastigotes. We also identify a Nuclear Export Signal (NES) in the trypanosomatid RPA-2 subunit. Mutations in the negatively charged residues of RPA-2 NES impair the differentiation process, suggesting that RPA exportation affects parasite differentiation into infective forms.

12.
Biochimie ; 162: 15-25, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30930281

ABSTRACT

Rbp38 is a protein exclusively found in trypanosomatid parasites, including Leishmania amazonensis, the etiologic agent of tegumentar leishmaniasis in the Americas. The protein was first described as a Leishmania tarentolae mitochondrial RNA binding protein. Later, it was shown that the trypanosomes Rbp38 orthologues were exclusively found in the mitochondria and involved in the stabilization and replication of kinetoplast DNA (kDNA). In contrast, L. amazonensis Rbp38 (LaRbp38), co-purifies with telomerase activity and interacts not only with kDNA but also with telomeric DNA, although shares with its counterparts high sequence identity and a putative N-terminal mitochondrial targeting signal (MTS). To understand how LaRbp38 interacts both with nuclear and kDNA, we have first investigated its subcellular localization. Using hydroxy-urea synchronized L. amazonensis promastigotes we could show that LaRbp38 shuttles from mitochondria to the nucleus at late S and G2 phases. Further, we identified a non-classical nuclear localization signal (NLS) at LaRbp38 C-terminal that binds with importin alpha, a protein involved in the nuclear transport of several proteins. Also, we obtained LaRbp38 truncated forms among which, some of them also showed an affinity for both telomeric DNA and kDNA. Analysis of these truncated forms showed that LaRbp38 DNA-binding region is located between amino acid residues 95-235. Together, our findings strongly suggest that LaRbp38 is multifunctional with dual subcellular localization.


Subject(s)
DNA, Kinetoplast/metabolism , DNA, Mitochondrial/metabolism , Leishmania/metabolism , Protozoan Proteins/metabolism , RNA-Binding Proteins/metabolism , Telomere/metabolism , Protein Binding
13.
Biochimie, v. 162, p. 15-25, jul. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2729

ABSTRACT

Rbp38 is a protein exclusively found in trypanosomatid parasites, including Leishmania amazonensis, the etiologic agent of tegumentar leishmaniasis in the Americas. The protein was first described as a Leishmania tarentolae mitochondrial RNA binding protein. Later, it was shown that the trypanosomes Rbp38 orthologues were exclusively found in the mitochondria and involved in the stabilization and replication of kinetoplast DNA (kDNA). In contrast, L. amazonensis Rbp38 (LaRbp38), co-purifies with telomerase activity and interacts not only with kDNA but also with telomeric DNA, although shares with its counterparts high sequence identity and a putative N-terminal mitochondrial targeting signal (MTS). To understand how LaRbp38 interacts both with nuclear and kDNA, we have first investigated its subcellular localization. Using hydroxy-urea synchronized L. amazonensis promastigotes we could show that LaRbp38 shuttles from mitochondria to the nucleus at late S and G2 phases. Further, we identified a non-classical nuclear localization signal (NLS) at LaRbp38?C-terminal that binds with importin alpha, a protein involved in the nuclear transport of several proteins. Also, we obtained LaRbp38 truncated forms among which, some of them also showed an affinity for both telomeric DNA and kDNA. Analysis of these truncated forms showed that LaRbp38 DNA-binding region is located between amino acid residues 95–235. Together, our findings strongly suggest that LaRbp38 is multifunctional with dual subcellular localization.

14.
Biochimie ; 162: p. 15-25, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15957

ABSTRACT

Rbp38 is a protein exclusively found in trypanosomatid parasites, including Leishmania amazonensis, the etiologic agent of tegumentar leishmaniasis in the Americas. The protein was first described as a Leishmania tarentolae mitochondrial RNA binding protein. Later, it was shown that the trypanosomes Rbp38 orthologues were exclusively found in the mitochondria and involved in the stabilization and replication of kinetoplast DNA (kDNA). In contrast, L. amazonensis Rbp38 (LaRbp38), co-purifies with telomerase activity and interacts not only with kDNA but also with telomeric DNA, although shares with its counterparts high sequence identity and a putative N-terminal mitochondrial targeting signal (MTS). To understand how LaRbp38 interacts both with nuclear and kDNA, we have first investigated its subcellular localization. Using hydroxy-urea synchronized L. amazonensis promastigotes we could show that LaRbp38 shuttles from mitochondria to the nucleus at late S and G2 phases. Further, we identified a non-classical nuclear localization signal (NLS) at LaRbp38?C-terminal that binds with importin alpha, a protein involved in the nuclear transport of several proteins. Also, we obtained LaRbp38 truncated forms among which, some of them also showed an affinity for both telomeric DNA and kDNA. Analysis of these truncated forms showed that LaRbp38 DNA-binding region is located between amino acid residues 95–235. Together, our findings strongly suggest that LaRbp38 is multifunctional with dual subcellular localization.

15.
J Eukaryot Microbiol ; 65(3): 345-356, 2018 05.
Article in English | MEDLINE | ID: mdl-29044824

ABSTRACT

Replication protein A (RPA), the major eukaryotic single-stranded binding protein, is a heterotrimeric complex formed by RPA-1, RPA-2, and RPA-3. RPA is a fundamental player in replication, repair, recombination, and checkpoint signaling. In addition, increasing evidences have been adding functions to RPA in telomere maintenance, such as interaction with telomerase to facilitate its activity and also involvement in telomere capping in some conditions. Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoa parasite that appears early in the evolution of eukaryotes. Recently, we have showed that T. cruziRPA presents canonical functions being involved with DNA replication and DNA damage response. Here, we found by FISH/IF assays that T. cruziRPA localizes at telomeres even outside replication (S) phase. In vitro analysis showed that one telomeric repeat is sufficient to bind RPA-1. Telomeric DNA induces different secondary structural modifications on RPA-1 in comparison with other types of DNA. In addition, RPA-1 presents a higher affinity for telomeric sequence compared to randomic sequence, suggesting that RPA may play specific roles in T. cruzi telomeric region.


Subject(s)
Replication Protein A/metabolism , Telomerase/metabolism , Telomere/metabolism , Trypanosoma cruzi/genetics , Chagas Disease/parasitology , Chromatin/metabolism , DNA, Single-Stranded/genetics , Humans , Protein Binding/genetics , Telomere/genetics , Telomere Homeostasis/physiology , Trypanosoma cruzi/metabolism
16.
J Eukaryot Microbiol, v. 65, n. 3, p. 345-356, maio/jun. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2510

ABSTRACT

Replication protein A (RPA), the major eukaryotic single-stranded binding protein, is a heterotrimeric complex formed by RPA-1, RPA-2, and RPA-3. RPA is a fundamental player in replication, repair, recombination, and checkpoint signaling. In addition, increasing evidences have been adding functions to RPA in telomere maintenance, such as interaction with telomerase to facilitate its activity and also involvement in telomere capping in some conditions. Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoa parasite that appears early in the evolution of eukaryotes. Recently, we have showed that T. cruzi RPA presents canonical functions being involved with DNA replication and DNA damage response. Here, we found by FISH/IF assays that T. cruzi RPA localizes at telomeres even outside replication (S) phase. In vitro analysis showed that one telomeric repeat is sufficient to bind RPA-1. Telomeric DNA induces different secondary structural modifications on RPA-1 in comparison with other types of DNA. In addition, RPA-1 presents a higher affinity for telomeric sequence compared to randomic sequence, suggesting that RPA may play specific roles in T. cruzi telomeric region.

17.
J. Eukaryot. Microbiol. ; 65(3): p. 345-356, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15270

ABSTRACT

Replication protein A (RPA), the major eukaryotic single-stranded binding protein, is a heterotrimeric complex formed by RPA-1, RPA-2, and RPA-3. RPA is a fundamental player in replication, repair, recombination, and checkpoint signaling. In addition, increasing evidences have been adding functions to RPA in telomere maintenance, such as interaction with telomerase to facilitate its activity and also involvement in telomere capping in some conditions. Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoa parasite that appears early in the evolution of eukaryotes. Recently, we have showed that T. cruzi RPA presents canonical functions being involved with DNA replication and DNA damage response. Here, we found by FISH/IF assays that T. cruzi RPA localizes at telomeres even outside replication (S) phase. In vitro analysis showed that one telomeric repeat is sufficient to bind RPA-1. Telomeric DNA induces different secondary structural modifications on RPA-1 in comparison with other types of DNA. In addition, RPA-1 presents a higher affinity for telomeric sequence compared to randomic sequence, suggesting that RPA may play specific roles in T. cruzi telomeric region.

18.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2583-2597, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28844976

ABSTRACT

BACKGROUND: Leishmania spp. telomeres are composed of 5'-TTAGGG-3' repeats associated with proteins. We have previously identified LaRbp38 and LaRPA-1 as proteins that bind the G-rich telomeric strand. At that time, we had also partially characterized a protein: DNA complex, named LaGT1, but we could not identify its protein component. METHODS AND RESULTS: Using protein-DNA interaction and competition assays, we confirmed that LaGT1 is highly specific to the G-rich telomeric single-stranded DNA. Three protein bands, with LaGT1 activity, were isolated from affinity-purified protein extracts in-gel digested, and sequenced de novo using mass spectrometry analysis. In silico analysis of the digested peptide identified them as a putative calmodulin with sequences identical to the T. cruzi calmodulin. In the Leishmania genome, the calmodulin ortholog is present in three identical copies. We cloned and sequenced one of the gene copies, named it LCalA, and obtained the recombinant protein. Multiple sequence alignment and molecular modeling showed that LCalA shares homology to most eukaryotes calmodulin. In addition, we demonstrated that LCalA is nuclear, partially co-localizes with telomeres and binds in vivo the G-rich telomeric strand. Recombinant LCalA can bind specifically and with relative affinity to the G-rich telomeric single-strand and to a 3'G-overhang, and DNA binding is calcium dependent. CONCLUSIONS: We have described a novel candidate component of Leishmania telomeres, LCalA, a nuclear calmodulin that binds the G-rich telomeric strand with high specificity and relative affinity, in a calcium-dependent manner. GENERAL SIGNIFICANCE: LCalA is the first reported calmodulin that binds in vivo telomeric DNA.


Subject(s)
Calmodulin/genetics , Leishmania/genetics , Leishmaniasis/genetics , Telomere-Binding Proteins/chemistry , Amino Acid Sequence/genetics , Calmodulin/chemistry , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Humans , Leishmania/pathogenicity , Leishmaniasis/parasitology , Protein Binding , Telomere , Telomere-Binding Proteins/genetics
19.
Biochimie ; 142: 11-21, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28751219

ABSTRACT

There are 2.5 million cases of snakebite per year and approximately 100,000 to 150,000 deaths. Thus, it is considered an important public health problem by the World Health Organization. Snakes from the Bothrops genus may cause severe local effects in the victims, so it is important to develop inhibitors to treat local effects in patients. In addition, approximately 30 different species of bothropic snakes have been described that may present differences in their venom composition. Small structural differences in the venom proteins may result in different ligands binding. Herein, BnSP-7, a PLA2-like protein that causes local myotoxic effects, was analyzed using different biophysical techniques. Crystal structures of BnSP-7 binding to three different cinnamic acid derivates were solved showing that the ligands bind in the membrane-dockage region (MDoS) of the protein. Spectroscopy fluorescence and microscale thermophoresis (MST) assays showed that these ligands also bind to BnSP-7 in solution and provide comparative information about their affinity to BnSP-7. MST experiments also showed that hydroxyl radicals of the ligands, involved in their binding with the MDoS region of BnSP-7, are essential to increase their affinity with the protein. As this region has been indicated as essential for the myotoxic mechanism, the ligands could potentially be used as inhibitors for BnSP-7. These results provide relevant insights to understand the PLA2-like proteins myotoxic mechanism and may eventually lead to design of new inhibitors for these toxins. Furthermore, a comparative structural analysis of BnSP-7 with other PLA2-like proteins showed that BnSP-7 has an atypical quaternary conformation, suggesting an intermediate state that is unlike other PLA2-like proteins. This information, combined with the absence or partial occupancy of molecules in their hydrophobic channel and the misaligned membrane-disruption region, led us to hypothesize that the protein is not able to fully exert its myotoxic activity like other PLA2-like proteins.


Subject(s)
Bothrops , Crotalid Venoms/enzymology , Phospholipases A2/chemistry , Protein Multimerization , Animals , Models, Molecular , Protein Structure, Quaternary
20.
Int J Biol Macromol ; 103: 525-532, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28527998

ABSTRACT

Phospholipases A2 inhibitors (PLIs) produced by venomous and non-venomous snakes play essential role in this resistance. These endogenous inhibitors may be classified by their fold in PLIα, PLIß and PLIγ. Phospholipases A2 (PLA2s) develop myonecrosis in snake envenomation, a consequence that is not efficiently neutralized by antivenom treatment. This work aimed to identify and characterize two PLIs from Amazonian snake species, Bothrops atrox and Micrurus lemniscatus. Liver tissues RNA of specimens from each species were isolated and amplified by RT-PCR using PCR primers based on known PLIγ gene sequences, followed by cloning and sequencing of amplified fragments. Sequence similarity studies showed elevated identity with inhibitor PLIγ gene sequences from other snake species. Molecular models of translated inhibitors' gene sequences resemble canonical three finger fold from PLIγ and support the hypothesis that the decapeptide (residues 107-116) may be responsible for PLA2 inhibition. Structural studies and action mechanism of these PLIs may provide necessary information to evaluate their potential as antivenom or as complement of the current ophidian accident treatment.


Subject(s)
Blood Proteins/chemistry , Blood Proteins/genetics , Bothrops/genetics , Coral Snakes/genetics , Models, Molecular , Amino Acid Sequence , Animals , Cloning, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...