Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Mater ; 16(6)2021 09 24.
Article in English | MEDLINE | ID: mdl-34492651

ABSTRACT

In order to support bone tissue regeneration, porous biomaterial implants (scaffolds) must offer chemical and mechanical properties, besides favorable fluid transport. Titanium implants provide these requirements, and depending on their microstructural parameters, the osteointegration process can be stimulated. The pore structure of scaffolds plays an essential role in this process, guiding fluid transport for neo-bone regeneration. The objective of this work was to analyze geometric and morphologic parameters of the porous microstructure of implants and analyze their influences in the bone regeneration process, and then discuss which parameters are the most fundamental. Bone ingrowths into two different sorts of porous titanium implants were analyzed after 7, 14, 21, 28, and 35 incubation days in experimental animal models. Measurements were accomplished with x-ray microtomography image analysis from rabbit tibiae, applying a pore-network technique. Taking into account the most favorable pore sizes for neo-bone regeneration, a novel approach was employed to assess the influence of the pore structure on this process: the analyses were carried out considering minimum pore and connection sizes. With this technique, pores and connections were analyzed separately and the influence of connectivity was deeply evaluated. This investigation showed a considerable influence of the size of connections on the permeability parameter and consequently on the neo-bone regeneration. The results indicate that the processing of porous scaffolds must be focused on deliver pore connections that stimulate the transport of fluids throughout the implant to be applied as a bone replacer.


Subject(s)
Osseointegration/drug effects , Tissue Scaffolds/chemistry , Titanium , X-Ray Microtomography , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Imaging, Three-Dimensional , Male , Rabbits , Tibia/diagnostic imaging , Tibia/drug effects , Titanium/chemistry , Titanium/pharmacology
3.
Sci Rep ; 11(1): 11232, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045570

ABSTRACT

Rhodolith beds built by free-living coralline algae are important ecosystems for marine biodiversity and carbonate production. Yet, our mechanistic understanding regarding rhodolith physiology and its drivers is still limited. Using three rhodolith species with different branching morphologies, we investigated the role of morphology in species' physiology and the implications for their susceptibility to ocean acidification (OA). For this, we determined the effects of thallus topography on diffusive boundary layer (DBL) thickness, the associated microscale oxygen and pH dynamics and their relationship with species' metabolic and light and dark calcification rates, as well as species' responses to short-term OA exposure. Our results show that rhodolith branching creates low-flow microenvironments that exhibit increasing DBL thickness with increasing branch length. This, together with species' metabolic rates, determined the light-dependent pH dynamics at the algal surface, which in turn dictated species' calcification rates. While these differences did not translate in species-specific responses to short-term OA exposure, the differences in the magnitude of diurnal pH fluctuations (~ 0.1-1.2 pH units) between species suggest potential differences in phenotypic plasticity to OA that may result in different susceptibilities to long-term OA exposure, supporting the general view that species' ecomechanical characteristics must be considered for predicting OA responses.


Subject(s)
Anthozoa/physiology , Calcification, Physiologic/physiology , Ecosystem , Oceans and Seas , Animals , Hydrogen-Ion Concentration , Rhodophyta/physiology
4.
Appl Radiat Isot ; 172: 109657, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33714016

ABSTRACT

The porosity of volcanic rocks can be strongly affected by secondary processes such as the percolation of water and hydrothermal fluids, thus promoting crystallization of secondary minerals in the pores. With an aim to evaluate the impact of secondary mineral fillings, this paper shows the segmentation of secondary and filled pores based on the micro-CT technique. The mineralogy of the sample was analyzed with optical microscopy. Multiscale analysis was performed to determine the total porosity before and after the processes. The results show the influence on the permeability parameter caused by crystallization.

SELECTION OF CITATIONS
SEARCH DETAIL