ABSTRACT
BACKGROUND: Ocular toxoplasmosis is the leading cause of infectious posterior uveitis worldwide, accounting for 30-50% of all cases in immunocompetent patients. Conventional treatment is associated with adverse effects and does not prevent recurrence. Intravitreal drug administration can improve disease outcomes and reduce side effects. Herein, we conducted a systematic review and meta-analysis on the efficacy of intravitreal injections for treating ocular toxoplasmosis. METHODS: The systematic search was conducted using PubMed, SciELO, and Google Scholar with the descriptors "ocular toxoplasmosis" AND "intravitreal". We analyzed studies that met the inclusion criteria, i.e., experimental cases in patients treated intravitreally for ocular toxoplasmosis. Considering the systematic review, we focused on the number of intravitreal injections, the therapeutic drug class, and the presence of preexisting conditions. To assess the efficacy of intravitreal injections, a meta-analysis was performed using visual acuity, side effects, disease recurrence, and inflammatory responses as variables. RESULTS: Intravitreal injection-induced side effects were rarely observed (0.49% [0.00, 1.51%] ). The use of antiparasitic and anti-inflammatory drugs afforded improved visual acuity (99.81% [98.60, 100.00%]) and marked effectiveness in treating ocular toxoplasmosis. CONCLUSIONS: Intravitreal injections may facilitate the successful treatment of ocular toxoplasmosis. However, clinicians should carefully evaluate the presence of preexisting conditions for ocular toxoplasmosis or previous diseases, as these can impact the decision to administer intravitreal injections.
Subject(s)
Drug-Related Side Effects and Adverse Reactions , Eye Infections , Toxoplasmosis , HumansABSTRACT
ABSTRACT Background: Ocular toxoplasmosis is the leading cause of infectious posterior uveitis worldwide, accounting for 30-50% of all cases in immunocompetent patients. Conventional treatment is associated with adverse effects and does not prevent recurrence. Intravitreal drug administration can improve disease outcomes and reduce side effects. Herein, we conducted a systematic review and meta-analysis on the efficacy of intravitreal injections for treating ocular toxoplasmosis. Methods: The systematic search was conducted using PubMed, SciELO, and Google Scholar with the descriptors "ocular toxoplasmosis" AND "intravitreal". We analyzed studies that met the inclusion criteria, i.e., experimental cases in patients treated intravitreally for ocular toxoplasmosis. Considering the systematic review, we focused on the number of intravitreal injections, the therapeutic drug class, and the presence of preexisting conditions. To assess the efficacy of intravitreal injections, a meta-analysis was performed using visual acuity, side effects, disease recurrence, and inflammatory responses as variables. Results: Intravitreal injection-induced side effects were rarely observed (0.49% [0.00, 1.51%] ). The use of antiparasitic and anti-inflammatory drugs afforded improved visual acuity (99.81% [98.60, 100.00%]) and marked effectiveness in treating ocular toxoplasmosis. Conclusions: Intravitreal injections may facilitate the successful treatment of ocular toxoplasmosis. However, clinicians should carefully evaluate the presence of preexisting conditions for ocular toxoplasmosis or previous diseases, as these can impact the decision to administer intravitreal injections.
ABSTRACT
PURPOSE: To report the first patient with ocular toxoplasmosis treated with a slow-release biodegradable intravitreal clindamycin implant. OBSERVATIONS: A 39-year-old human immunodeficiency virus (HIV)-positive woman with recurrent toxoplasmic retinochoroiditis and vitritis for whom oral medication was medically contraindicated was treated with an intravitreal slow-release clindamycin implant and three monthly intravitreal injections of clindamycin and dexamethasone. Serial ophthalmologic examinations demonstrated gradual, complete resolution of posterior uveitis and healing of the retinochoroidal lesion with cicatricial changes, as well as gradual improvement of cells in the anterior chamber. There was no significant change in electroretinography waves after treatment with the implant. The presence of the implant, or part of it, was detectable in the vitreous cavity for 4 months. To date, the patient has been monitored for 30 months, and there has been no reactivation of ocular toxoplasmosis. CONCLUSION: The slow-release clindamycin implant was safe for intravitreal use in this patient and may have contributed to the long-term control of toxoplasmosis chorioretinitis.
ABSTRACT
In this study, the methotrexate (MTX) was incorporated into the poly(ε-caprolactone) (PCL) to design implants (MTX PCL implants) aiming the local treatment of inflammatory angiogenesis diseases without causing systemic side effects. Sponges were inserted into the subcutaneous tissue of mice as a framework for fibrovascular tissue growth. After 4 days, MTX PCL implants were also introduced, and anti-inflammatory, antiangiogenic, and antifibrogenic activities of the MTX were determined. MTX reduced the vascularization (hemoglobin content), the neutrophil, and monocyte/macrophage infiltration (MPO and NAG activities, respectively), and the collagen deposition in sponges. MTX reduced tumor necrosis factor-α and IL-6 levels, demonstrating its local antiangiogenic and anti-inflammatory effects. Furthermore, hepatotoxicity, nephrotoxicity, and myelotoxicity, which could be induced by the drug, were evaluated. However, MTX did not promote toxicity to these organs, as the levels of AST and ALT (hepatic markers) and creatinine and urea (renal markers) were not increased, and the complete blood count was not decreased. In conclusion, MTX PCL implants demonstrated to be effective in regulating the components of the inflammatory angiogenesis locally established, and presented an acceptable safety profile.
Subject(s)
Angiogenesis Inhibitors/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Delayed-Action Preparations/chemistry , Methotrexate/administration & dosage , Polyesters/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Collagen/analysis , Cytokines/analysis , Drug Delivery Systems , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/pharmacology , Male , Mice , Mice, Inbred BALB C , Neovascularization, Pathologic/drug therapy , Prostheses and ImplantsABSTRACT
In this study, the methotrexate (MTX) was incorporated into the poly(e-caprolactone) (PCL) to design implants (MTX PCL implants) aiming the local treatment of inflammatory angiogenesis diseases without causing systemic side effects. Sponges were inserted into the subcutaneous tissue of mice as a framework for fibrovascular tissue growth. After 4days, MTX PCL implants were also introduced, and anti-inflammatory, antiangiogenic, and antifibrogenic activities of the MTX were determined. MTX reduced the vascularization (hemoglobin content), the neutrophil, and monocyte/macrophage infiltration (MPO and NAG activities, respectively), and the collagen deposition in sponges. MTX reduced tumor necrosis factor-a and IL-6 levels, demonstrating its local antiangiogenic and anti-inflammatory effects. Furthermore, hepatotoxicity, nephrotoxicity, and myelotoxicity, which could be induced by the drug, were evaluated. However, MTX did not promote toxicity to these organs, as the levels of AST and ALT (hepatic markers) and creatinine and urea (renal markers) were not increased, and the complete blood count was not decreased. In conclusion, MTX PCL implants demonstrated to be effective in regulating the components of the inflammatory angiogenesis locally established, and presented an acceptable safety profile. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3731-3742, 2015.