Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Dis Model Mech ; 17(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38655653

ABSTRACT

Steroid myopathy is a clinically challenging condition exacerbated by prolonged corticosteroid use or adrenal tumors. In this study, we engineered a functional three-dimensional (3D) in vitro skeletal muscle model to investigate steroid myopathy. By subjecting our bioengineered muscle tissues to dexamethasone treatment, we reproduced the molecular and functional aspects of this disease. Dexamethasone caused a substantial reduction in muscle force, myotube diameter and induced fatigue. We observed nuclear translocation of the glucocorticoid receptor (GCR) and activation of the ubiquitin-proteasome system within our model, suggesting their coordinated role in muscle atrophy. We then examined the therapeutic potential of taurine in our 3D model for steroid myopathy. Our findings revealed an upregulation of phosphorylated AKT by taurine, effectively countering the hyperactivation of the ubiquitin-proteasomal pathway. Importantly, we demonstrate that discontinuing corticosteroid treatment was insufficient to restore muscle mass and function. Taurine treatment, when administered concurrently with corticosteroids, notably enhanced contractile strength and protein turnover by upregulating the AKT-mTOR axis. Our model not only identifies a promising therapeutic target, but also suggests combinatorial treatment that may benefit individuals undergoing corticosteroid treatment or those diagnosed with adrenal tumors.


Subject(s)
Dexamethasone , Models, Biological , Muscle Contraction , Muscular Diseases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Taurine , Proto-Oncogene Proteins c-akt/metabolism , Humans , Taurine/pharmacology , TOR Serine-Threonine Kinases/metabolism , Muscle Contraction/drug effects , Dexamethasone/pharmacology , Muscular Diseases/pathology , Muscular Diseases/drug therapy , Signal Transduction/drug effects , Receptors, Glucocorticoid/metabolism , Muscle Strength/drug effects , Proteasome Endopeptidase Complex/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Organ Size/drug effects , Phosphorylation/drug effects , Adrenal Cortex Hormones/pharmacology , Ubiquitin/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/metabolism , Steroids/pharmacology
2.
Biomedicines ; 12(2)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38398055

ABSTRACT

At its core, tissue engineering involves the use of a scaffold for the formation of new viable tissue for medical purposes [...].

3.
Biofabrication ; 15(4)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37725998

ABSTRACT

Duchenne muscular dystrophy (DMD) is the most prevalent neuromuscular disease diagnosed in childhood. It is a progressive and wasting disease, characterized by a degeneration of skeletal and cardiac muscles caused by the lack of dystrophin protein. The absence of this crucial structural protein leads to sarcolemmal fragility, resulting in muscle fiber damage during contraction. Despite ongoing efforts, there is no cure available for DMD patients. One of the primary challenges is the limited efficacy of current preclinical tools, which fail in modeling the biological complexity of the disease. Human-based three-dimensional (3D) cell culture methods appear as a novel approach to accelerate preclinical research by enhancing the reproduction of pathophysiological processes in skeletal muscle. In this work, we developed a patient-derived functional 3D skeletal muscle model of DMD that reproduces the sarcolemmal damage found in the native DMD muscle. These bioengineered skeletal muscle tissues exhibit contractile functionality, as they responded to electrical pulse stimulation. Sustained contractile regimes induced the loss of myotube integrity, mirroring the pathological myotube breakdown inherent in DMD due to sarcolemmal instability. Moreover, damaged DMD tissues showed disease functional phenotypes, such as tetanic fatigue. We also evaluated the therapeutic effect of utrophin upregulator drug candidates on the functionality of the skeletal muscle tissues, thus providing deeper insight into the real impact of these treatments. Overall, our findings underscore the potential of bioengineered 3D skeletal muscle technology to advance DMD research and facilitate the development of novel therapies for DMD and related neuromuscular disorders.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Muscle, Skeletal , Muscle Fibers, Skeletal , Utrophin/genetics , Utrophin/metabolism , Myocardium/metabolism
4.
Dis Model Mech ; 16(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37350551

ABSTRACT

Muscular dystrophies are a heterogeneous group of highly debilitating diseases that result in muscle atrophy and weakness. The lack of suitable cellular and animal models that reproduce specific aspects of their pathophysiology is one of the reasons why there are no curative treatments for these disorders. This highlights a considerable gap between current laboratory models and clinical practice. We strongly believe that organs-on-chip could help to fill this gap. Organs-on-chip, and in particular muscles-on-chip, are microfluidic devices that integrate functional skeletal muscle tissues. Biosensors in these systems allow monitoring of muscle homeostasis or drug responses in situ. This Perspective outlines the potential of organs-on-chip as advanced models for muscular dystrophies, as well as the current challenges and future opportunities for this technology.


Subject(s)
Muscular Dystrophies , Animals , Muscular Dystrophies/therapy , Muscle, Skeletal , Lab-On-A-Chip Devices
5.
Anal Chem ; 95(23): 8922-8931, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37253113

ABSTRACT

Immunoassays show great potential for the detection of low levels of cytokines, due to their high sensitivity and excellent specificity. There is a particular demand for biosensors that enable both high-throughput screening and continuous monitoring of clinically relevant cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα). To this end, we here introduce a novel bioluminescent immunoassay based on the ratiometric plug-and-play immunodiagnostics (RAPPID) platform, with an improved intrinsic signal-to-background and an >80-fold increase in the luminescent signal. The new dRAPPID assay, comprising a dimeric protein G adapter connected via a semiflexible linker, was applied to detect the secretion of IL-6 by breast carcinoma cells upon TNFα stimulation and the production of low concentrations of IL-6 (∼18 pM) in an endotoxin-stimulated human 3D muscle tissue model. Moreover, we integrated the dRAPPID assay in a newly developed microfluidic device for the simultaneous and continuous monitoring of changes in IL-6 and TNFα in the low-nanomolar range. The luminescence-based read-out and the homogeneous nature of the dRAPPID platform allowed for detection with a simple measurement setup, consisting of a digital camera and a light-sealed box. This permits the usage of the continuous dRAPPID monitoring chip at the point of need, without the requirement for complex or expensive detection techniques.


Subject(s)
Cytokines , Tumor Necrosis Factor-alpha , Humans , Interleukin-6 , Immunoassay/methods , Immunologic Tests
6.
Pharmaceutics ; 15(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37111604

ABSTRACT

The symptoms of Myotonic Dystrophy Type 1 (DM1) are multi-systemic and life-threatening. The neuromuscular disorder is rooted in a non-coding CTG microsatellite expansion in the DM1 protein kinase (DMPK) gene that, upon transcription, physically sequesters the Muscleblind-like (MBNL) family of splicing regulator proteins. The high-affinity binding occurring between the proteins and the repetitions disallow MBNL proteins from performing their post-transcriptional splicing regulation leading to downstream molecular effects directly related to disease symptoms such as myotonia and muscle weakness. In this study, we build on previously demonstrated evidence showing that the silencing of miRNA-23b and miRNA-218 can increase MBNL1 protein in DM1 cells and mice. Here, we use blockmiR antisense technology in DM1 muscle cells, 3D mouse-derived muscle tissue, and in vivo mice to block the binding sites of these microRNAs in order to increase MBNL translation into protein without binding to microRNAs. The blockmiRs show therapeutic effects with the rescue of mis-splicing, MBNL subcellular localization, and highly specific transcriptomic expression. The blockmiRs are well tolerated in 3D mouse skeletal tissue inducing no immune response. In vivo, a candidate blockmiR also increases Mbnl1/2 protein and rescues grip strength, splicing, and histological phenotypes.

7.
Biofabrication ; 14(4)2022 09 13.
Article in English | MEDLINE | ID: mdl-36041422

ABSTRACT

Bioengineered human skeletal muscle tissues have emerged in the last years as newin vitrosystems for disease modeling. These bioartificial muscles are classically fabricated by encapsulating human myogenic precursor cells in a hydrogel scaffold that resembles the extracellular matrix. However, most of these hydrogels are derived from xenogenic sources, and the culture media is supplemented with animal serum, which could interfere in drug testing assays. On the contrary, xeno-free biomaterials and culture conditions in tissue engineering offer increased relevance for developing human disease models. In this work, we used human platelet lysate (PL)-based nanocomposite hydrogels (HUgel) as scaffolds for human skeletal muscle tissue engineering. These hydrogels consist of human PL reinforced with aldehyde-cellulose nanocrystals (a-CNC) that allow tunable mechanical, structural, and biochemical properties for the 3D culture of stem cells. Here, we developed hydrogel casting platforms to encapsulate human muscle satellite stem cells in HUgel. The a-CNC content was modulated to enhance matrix remodeling, uniaxial tension, and self-organization of the cells, resulting in the formation of highly aligned, long myotubes expressing sarcomeric proteins. Moreover, the bioengineered human muscles were subjected to electrical stimulation, and the exerted contractile forces were measured in a non-invasive manner. Overall, our results demonstrated that the bioengineered human skeletal muscles could be built in xeno-free cell culture platforms to assess tissue functionality, which is promising for drug development applications.


Subject(s)
Hydrogels , Muscle Development , Animals , Extracellular Matrix/chemistry , Humans , Hydrogels/chemistry , Muscle, Skeletal , Tissue Engineering , Tissue Scaffolds
8.
Biomedicines ; 10(5)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35625696

ABSTRACT

The liver neutralizes endogenous and exogenous toxins and metabolites, being metabolically interconnected with many organs. Numerous clinical and experimental studies show a strong association between Non-alcoholic fatty liver disease (NAFLD) and loss of skeletal muscle mass known as sarcopenia. Liver transplantation solves the hepatic-related insufficiencies, but it is unable to revert sarcopenia. Knowing the mechanism(s) by which different organs communicate with each other is crucial to improve the drug development that still relies on the two-dimensional models. However, those models fail to mimic the pathological features of the disease. Here, both liver and skeletal muscle cells were encapsulated in gelatin methacryloyl and carboxymethylcellulose to recreate the disease's phenotype in vitro. The 3D hepatocytes were challenged with non-esterified fatty acids (NEFAs) inducing features of Non-alcoholic fatty liver (NAFL) such as lipid accumulation, metabolic activity impairment and apoptosis. The 3D skeletal muscle tissues incubated with supernatant from fatty hepatocytes displayed loss of maturation and atrophy. This study demonstrates the connection between the liver and the skeletal muscle in NAFL, narrowing down the players for potential treatments. The tool herein presented was employed as a customizable 3D in vitro platform to assess the protective effect of albumin on both hepatocytes and myotubes.

9.
FASEB J ; 35(10): e21914, 2021 10.
Article in English | MEDLINE | ID: mdl-34547132

ABSTRACT

Limb-girdle muscular dystrophy D2 (LGMDD2) is an ultrarare autosomal dominant myopathy caused by mutation of the normal stop codon of the TNPO3 nuclear importin. The mutant protein carries a 15 amino acid C-terminal extension associated with pathogenicity. Here we report the first animal model of the disease by expressing the human mutant TNPO3 gene in Drosophila musculature or motor neurons and concomitantly silencing the endogenous expression of the fly protein ortholog. A similar genotype expressing wildtype TNPO3 served as a control. Phenotypes characterization revealed that mutant TNPO3 expression targeted at muscles or motor neurons caused LGMDD2-like phenotypes such as muscle degeneration and atrophy, and reduced locomotor ability. Notably, LGMDD2 mutation increase TNPO3 at the transcript and protein level in the Drosophila model Upregulated muscle autophagy observed in LGMDD2 patients was also confirmed in the fly model, in which the anti-autophagic drug chloroquine was able to rescue histologic and functional phenotypes. Overall, we provide a proof of concept of autophagy as a target to treat disease phenotypes and propose a neurogenic component to explain mutant TNPO3 pathogenicity in diseased muscles.


Subject(s)
Autophagy/drug effects , Chloroquine/pharmacology , Chloroquine/therapeutic use , Disease Models, Animal , Drosophila melanogaster/drug effects , Muscular Atrophy/drug therapy , Muscular Dystrophies, Limb-Girdle/complications , Animals , Animals, Genetically Modified , Autophagy/genetics , Drosophila melanogaster/genetics , Female , Humans , Insect Hormones , Locomotion , Male , Motor Neurons/metabolism , Muscles/metabolism , Muscular Atrophy/complications , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Muscular Dystrophies, Limb-Girdle/drug therapy , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Phenotype , Survival Rate , beta Karyopherins/genetics , beta Karyopherins/metabolism
10.
Mol Ther Nucleic Acids ; 26: 174-191, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34513303

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by expansion of unstable CTG repeats in a non-coding region of the DMPK gene. CUG expansions in mutant DMPK transcripts sequester MBNL1 proteins in ribonuclear foci. Depletion of this protein is a primary contributor to disease symptoms such as muscle weakness and atrophy and myotonia, yet upregulation of endogenous MBNL1 levels may compensate for this sequestration. Having previously demonstrated that antisense oligonucleotides against miR-218 boost MBNL1 expression and rescue phenotypes in disease models, here we provide preclinical characterization of an antagomiR-218 molecule using the HSALR mouse model and patient-derived myotubes. In HSALR, antagomiR-218 reached 40-60 pM 2 weeks after injection, rescued molecular and functional phenotypes in a dose- and time-dependent manner, and showed a good toxicity profile after a single subcutaneous administration. In muscle tissue, antagomiR rescued the normal subcellular distribution of Mbnl1 and did not alter the proportion of myonuclei containing CUG foci. In patient-derived cells, antagomiR-218 improved defective fusion and differentiation and rescued up to 34% of the gene expression alterations found in the transcriptome of patient cells. Importantly, miR-218 was found to be upregulated in DM1 muscle biopsies, pinpointing this microRNA (miRNA) as a relevant therapeutic target.

11.
Biofabrication ; 13(3)2021 04 26.
Article in English | MEDLINE | ID: mdl-33836519

ABSTRACT

Myotonic dystrophy type 1 (DM1) is the most common hereditary myopathy in the adult population. The disease is characterized by progressive skeletal muscle degeneration that produces severe disability. At present, there is still no effective treatment for DM1 patients, but the breakthroughs in understanding the molecular pathogenic mechanisms in DM1 have allowed the testing of new therapeutic strategies. Animal models andin vitrotwo-dimensional cell cultures have been essential for these advances. However, serious concerns exist regarding how faithfully these models reproduce the biological complexity of the disease. Biofabrication tools can be applied to engineer human three-dimensional (3D) culture systems that complement current preclinical research models. Here, we describe the development of the firstin vitro3D model of DM1 human skeletal muscle. Transdifferentiated myoblasts from patient-derived fibroblasts were encapsulated in micromolded gelatin methacryloyl-carboxymethyl cellulose methacrylate hydrogels through photomold patterning on functionalized glass coverslips. These hydrogels present a microstructured topography that promotes myoblasts alignment and differentiation resulting in highly aligned myotubes from both healthy and DM1 cells in a long-lasting cell culture. The DM1 3D microtissues recapitulate the molecular alterations detected in patient biopsies. Importantly, fusion index analyses demonstrate that 3D micropatterning significantly improved DM1 cell differentiation into multinucleated myotubes compared to standard cell cultures. Moreover, the characterization of the 3D cultures of DM1 myotubes detects phenotypes as the reduced thickness of myotubes that can be used for drug testing. Finally, we evaluated the therapeutic effect of antagomiR-23b administration on bioengineered DM1 skeletal muscle microtissues. AntagomiR-23b treatment rescues both molecular DM1 hallmarks and structural phenotype, restoring myotube diameter to healthy control sizes. Overall, these new microtissues represent an improvement over conventional cell culture models and can be used as biomimetic platforms to establish preclinical studies for myotonic dystrophy.


Subject(s)
Cell Differentiation , Muscle, Skeletal , Myotonic Dystrophy , Animals , Humans , Muscle Fibers, Skeletal , Myoblasts
12.
J Tissue Eng ; 12: 2041731420981339, 2021.
Article in English | MEDLINE | ID: mdl-33628411

ABSTRACT

Muscular dystrophies are a group of highly disabling disorders that share degenerative muscle weakness and wasting as common symptoms. To date, there is not an effective cure for these diseases. In the last years, bioengineered tissues have emerged as powerful tools for preclinical studies. In this review, we summarize the recent technological advances in skeletal muscle tissue engineering. We identify several ground-breaking techniques to fabricate in vitro bioartificial muscles. Accumulating evidence shows that scaffold-based tissue engineering provides topographical cues that enhance the viability and maturation of skeletal muscle. Functional bioartificial muscles have been developed using human myoblasts. These tissues accurately responded to electrical and biological stimulation. Moreover, advanced drug screening tools can be fabricated integrating these tissues in electrical stimulation platforms. However, more work introducing patient-derived cells and integrating these tissues in microdevices is needed to promote the clinical translation of bioengineered skeletal muscle as preclinical tools for muscular dystrophies.

13.
Nanoscale Adv ; 2(7): 2885-2896, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-36132391

ABSTRACT

Currently, the fabrication of scaffolds for engineered skeletal muscle tissues is unable to reach the millimeter size. The main drawbacks are the poor nutrient diffusion, lack of an internal structure to align the precursor cells, and poor mechanical and electric properties. Herein, we present a combination of gelatin-carboxymethyl cellulose materials polymerised by a cryogelation process that allowed us to reach scaffold fabrication up to millimeter size and solve the main problems related to the large size muscle tissue constructs. (1) By incorporating carbon nanotubes (CNT), we can improve the electrical properties of the scaffold, thereby enhancing tissue maturation when applying an electric pulse stimulus (EPS). (2) We have fabricated an anisotropic internal three-dimensional microarchitecture with good pore distribution and highly aligned morphology to enhance the cell alignment, cell fusion and myotube formation. With this set up, we were able to generate a fully functional skeletal muscle tissue using a combination of EPS and our doped-biocomposite scaffold and obtain a mature tissue on the millimeter scale. We also characterized the pore distribution, swelling, stiffness and conductivity of the scaffold. Moreover, we proved that the cells were viable and could fuse in three-dimensional (3D) functional myotubes throughout the scaffold. In conclusion, we fabricated a biocompatible and customizable scaffold for 3D cell culture suitable for a wide range of applications such as organ-on-a-chip, drug screening, transplantation and disease modelling.

14.
Nat Commun ; 9(1): 2482, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29946070

ABSTRACT

Functional depletion of the alternative splicing factors Muscleblind-like (MBNL 1 and 2) is at the basis of the neuromuscular disease myotonic dystrophy type 1 (DM1). We previously showed the efficacy of miRNA downregulation in Drosophila DM1 model. Here, we screen for miRNAs that regulate MBNL1 and MBNL2 in HeLa cells. We thus identify miR-23b and miR-218, and confirm that they downregulate MBNL proteins in this cell line. Antagonists of miR-23b and miR-218 miRNAs enhance MBNL protein levels and rescue pathogenic missplicing events in DM1 myoblasts. Systemic delivery of these "antagomiRs" similarly boost MBNL expression and improve DM1-like phenotypes, including splicing alterations, histopathology, and myotonia in the HSALR DM1 model mice. These mammalian data provide evidence for therapeutic blocking of the miRNAs that control Muscleblind-like protein expression in myotonic dystrophy.


Subject(s)
MicroRNAs/genetics , Myotonic Dystrophy/genetics , Myotonic Dystrophy/therapy , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , 3' Untranslated Regions , Alternative Splicing , Animals , Cell Line , Disease Models, Animal , Gene Silencing , HeLa Cells , Humans , Male , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myoblasts, Skeletal/metabolism , Myoblasts, Skeletal/pathology , Myotonic Dystrophy/physiopathology , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation
15.
Drug Discov Today ; 22(11): 1740-1748, 2017 11.
Article in English | MEDLINE | ID: mdl-28780071

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a rare multisystemic neuromuscular disorder caused by expansion of CTG trinucleotide repeats in the noncoding region of the DMPK gene. Mutant DMPK transcripts are toxic and alter gene expression at several levels. Chiefly, the secondary structure formed by CUGs has a strong propensity to capture and retain proteins, like those of the muscleblind-like (MBNL) family. Sequestered MBNL proteins cannot then fulfill their normal functions. Many therapeutic approaches have been explored to reverse these pathological consequences. Here, we review the myriad of small molecules that have been proposed for DM1, including examples obtained from computational rational design, HTS, drug repurposing, and therapeutic gene modulation.


Subject(s)
Drug Design , Myotonic Dystrophy/drug therapy , Myotonin-Protein Kinase/genetics , Animals , Drug Repositioning , Gene Expression Regulation , High-Throughput Screening Assays/methods , Humans , Myotonic Dystrophy/genetics , Myotonic Dystrophy/physiopathology , Trinucleotide Repeats
16.
Sci Rep ; 6: 36230, 2016 11 02.
Article in English | MEDLINE | ID: mdl-27805016

ABSTRACT

Myotonic Dystrophy type 1 (DM1) originates from alleles of the DMPK gene with hundreds of extra CTG repeats in the 3' untranslated region (3' UTR). CUG repeat RNAs accumulate in foci that sequester Muscleblind-like (MBNL) proteins away from their functional target transcripts. Endogenous upregulation of MBNL proteins is, thus, a potential therapeutic approach to DM1. Here we identify two miRNAs, dme-miR-277 and dme-miR-304, that differentially regulate muscleblind RNA isoforms in miRNA sensor constructs. We also show that their sequestration by sponge constructs derepresses endogenous muscleblind not only in a wild type background but also in a DM1 Drosophila model expressing non-coding CUG trinucleotide repeats throughout the musculature. Enhanced muscleblind expression resulted in significant rescue of pathological phenotypes, including reversal of several mis-splicing events and reduced muscle atrophy in DM1 adult flies. Rescued flies had improved muscle function in climbing and flight assays, and had longer lifespan compared to disease controls. These studies provide proof of concept for a similar potentially therapeutic approach to DM1 in humans.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , MicroRNAs/genetics , Myotonic Dystrophy/genetics , Nuclear Proteins/genetics , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Flight, Animal/physiology , Gene Expression Regulation , Motor Activity/genetics , Motor Activity/physiology , Myotonic Dystrophy/metabolism , Nuclear Proteins/metabolism , Phenotype , Trinucleotide Repeat Expansion/genetics
17.
PLoS One ; 11(2): e0150501, 2016.
Article in English | MEDLINE | ID: mdl-26919350

ABSTRACT

Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease caused by expansion of a CTG microsatellite in the 3' untranslated region of the DMPK gene. Despite characteristic muscular, cardiac, and neuropsychological symptoms, CTG trinucleotide repeats are unstable both in the somatic and germinal lines, making the age of onset, clinical presentation, and disease severity very variable. A molecular biomarker to stratify patients and to follow disease progression is, thus, an unmet medical need. Looking for a novel biomarker, and given that specific miRNAs have been found to be misregulated in DM1 heart and muscle tissues, we profiled the expression of 175 known serum miRNAs in DM1 samples. The differences detected between patients and controls were less than 2.6 fold for all of them and a selection of six candidate miRNAs, miR-103, miR-107, miR-21, miR-29a, miR-30c, and miR-652 all failed to show consistent differences in serum expression in subsequent validation experiments.


Subject(s)
MicroRNAs/blood , Myotonic Dystrophy/blood , Adult , Biomarkers , Blotting, Southern , Gene Expression Profiling , Humans , Male , Middle Aged , Myotonic Dystrophy/genetics , Trinucleotide Repeats
18.
Dis Model Mech ; 8(7): 679-90, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26092529

ABSTRACT

Muscle mass wasting is one of the most debilitating symptoms of myotonic dystrophy type 1 (DM1) disease, ultimately leading to immobility, respiratory defects, dysarthria, dysphagia and death in advanced stages of the disease. In order to study the molecular mechanisms leading to the degenerative loss of adult muscle tissue in DM1, we generated an inducible Drosophila model of expanded CTG trinucleotide repeat toxicity that resembles an adult-onset form of the disease. Heat-shock induced expression of 480 CUG repeats in adult flies resulted in a reduction in the area of the indirect flight muscles. In these model flies, reduction of muscle area was concomitant with increased apoptosis and autophagy. Inhibition of apoptosis or autophagy mediated by the overexpression of DIAP1, mTOR (also known as Tor) or muscleblind, or by RNA interference (RNAi)-mediated silencing of autophagy regulatory genes, achieved a rescue of the muscle-loss phenotype. In fact, mTOR overexpression rescued muscle size to a size comparable to that in control flies. These results were validated in skeletal muscle biopsies from DM1 patients in which we found downregulated autophagy and apoptosis repressor genes, and also in DM1 myoblasts where we found increased autophagy. These findings provide new insights into the signaling pathways involved in DM1 disease pathogenesis.


Subject(s)
Myotonic Dystrophy/etiology , Animals , Animals, Genetically Modified , Apoptosis/genetics , Autophagy/genetics , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Female , Genes, Insect , Humans , Inhibitor of Apoptosis Proteins/genetics , Muscular Atrophy/etiology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Myotonic Dystrophy/genetics , Myotonic Dystrophy/pathology , Myotonin-Protein Kinase/genetics , Nuclear Proteins/genetics , Signal Transduction , TOR Serine-Threonine Kinases/genetics , Trinucleotide Repeat Expansion , Up-Regulation
19.
Dis Model Mech ; 6(1): 184-96, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23118342

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a genetic disease caused by the pathological expansion of a CTG trinucleotide repeat in the 3' UTR of the DMPK gene. In the DMPK transcripts, the CUG expansions sequester RNA-binding proteins into nuclear foci, including transcription factors and alternative splicing regulators such as MBNL1. MBNL1 sequestration has been associated with key features of DM1. However, the basis behind a number of molecular and histological alterations in DM1 remain unclear. To help identify new pathogenic components of the disease, we carried out a genetic screen using a Drosophila model of DM1 that expresses 480 interrupted CTG repeats, i(CTG)480, and a collection of 1215 transgenic RNA interference (RNAi) fly lines. Of the 34 modifiers identified, two RNA-binding proteins, TBPH (homolog of human TAR DNA-binding protein 43 or TDP-43) and BSF (Bicoid stability factor; homolog of human LRPPRC), were of particular interest. These factors modified i(CTG)480 phenotypes in the fly eye and wing, and TBPH silencing also suppressed CTG-induced defects in the flight muscles. In Drosophila flight muscle, TBPH, BSF and the fly ortholog of MBNL1, Muscleblind (Mbl), were detected in sarcomeric bands. Expression of i(CTG)480 resulted in changes in the sarcomeric patterns of these proteins, which could be restored by coexpression with human MBNL1. Epistasis studies showed that Mbl silencing was sufficient to induce a subcellular redistribution of TBPH and BSF proteins in the muscle, which mimicked the effect of i(CTG)480 expression. These results provide the first description of TBPH and BSF as targets of Mbl-mediated CTG toxicity, and they suggest an important role of these proteins in DM1 muscle pathology.


Subject(s)
Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Animals , Animals, Genetically Modified , Disease Models, Animal , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/antagonists & inhibitors , Epistasis, Genetic , Female , Gene Knockdown Techniques , Genes, Insect , Humans , Muscles/metabolism , Muscles/pathology , Myotonic Dystrophy/pathology , Nuclear Proteins/antagonists & inhibitors , RNA Interference , Sarcomeres/metabolism , Sarcomeres/pathology , Trinucleotide Repeat Expansion
20.
Hum Mol Genet ; 22(4): 704-16, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23139243

ABSTRACT

Myotonic dystrophy type 1 (DM1) is caused by the expansion of CTG repeats in the 3' untranslated region of the DMPK gene. Several missplicing events and transcriptional alterations have been described in DM1 patients. A large number of these defects have been reproduced in animal models expressing CTG repeats alone. Recent studies have also reported miRNA dysregulation in DM1 patients. In this work, a Drosophila model was used to investigate miRNA transcriptome alterations in the muscle, specifically triggered by CTG expansions. Twenty miRNAs were differentially expressed in CTG-expressing flies. Of these, 19 were down-regulated, whereas 1 was up-regulated. This trend was confirmed for those miRNAs conserved between Drosophila and humans (miR-1, miR-7 and miR-10) in muscle biopsies from DM1 patients. Consistently, at least seven target transcripts of these miRNAs were up-regulated in DM1 skeletal muscles. The mechanisms involved in dysregulation of miR-7 included a reduction of its primary precursor both in CTG-expressing flies and in DM1 patients. Additionally, a regulatory role for Muscleblind (Mbl) was also suggested for miR-1 and miR-7, as these miRNAs were down-regulated in flies where Mbl had been silenced. Finally, the physiological relevance of miRNA dysregulation was demonstrated for miR-10, since over-expression of this miRNA in Drosophila extended the lifespan of CTG-expressing flies. Taken together, our results contribute to our understanding of the origin and the role of miRNA alterations in DM1.


Subject(s)
MicroRNAs/genetics , Myotonic Dystrophy/genetics , Trinucleotide Repeat Expansion , Animals , Base Sequence , Cells, Cultured , Down-Regulation , Drosophila Proteins/metabolism , Drosophila melanogaster , Female , Gene Expression , Gene Expression Regulation , Humans , Life Expectancy , Male , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Nuclear Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...