Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Nat Cancer ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844817

ABSTRACT

Many individuals with cancer are resistant to immunotherapies. Here, we identify the gene encoding the pyrimidine salvage pathway enzyme cytidine deaminase (CDA) among the top upregulated metabolic genes in several immunotherapy-resistant tumors. We show that CDA in cancer cells contributes to the uridine diphosphate (UDP) pool. Extracellular UDP hijacks immunosuppressive tumor-associated macrophages (TAMs) through its receptor P2Y6. Pharmacologic or genetic inhibition of CDA in cancer cells (or P2Y6 in TAMs) disrupts TAM-mediated immunosuppression, promoting cytotoxic T cell entry and susceptibility to anti-programmed cell death protein 1 (anti-PD-1) treatment in resistant pancreatic ductal adenocarcinoma (PDAC) and melanoma models. Conversely, CDA overexpression in CDA-depleted PDACs or anti-PD-1-responsive colorectal tumors or systemic UDP administration (re)establishes resistance. In individuals with PDAC, high CDA levels in cancer cells correlate with increased TAMs, lower cytotoxic T cells and possibly anti-PD-1 resistance. In a pan-cancer single-cell atlas, CDAhigh cancer cells match with T cell cytotoxicity dysfunction and P2RY6high TAMs. Overall, we suggest CDA and P2Y6 as potential targets for cancer immunotherapy.

2.
Breast Cancer Res Treat ; 205(3): 555-565, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38472594

ABSTRACT

PURPOSE: Recent evidence suggests that age-accumulated methylmalonic acid (MMA) promotes breast cancer progression in mice. This study aims to investigate the association between baseline serum MMA concentrations in patients with breast cancer and the development of subsequent distant metastases. METHODS: We included 32 patients with early Luminal B-like breast cancer (LumB, median age 62.4y) and 52 patients with early triple-negative breast cancer (TNBC, median age 50.5y) who developed distant metastases within 5 years. They were matched to an equal number of early breast cancer patients (median age 62.2y for LumB and 50.5y for TNBC) who did not develop distant metastases with at least 5 years of follow-up. RESULTS: Baseline serum MMA levels at breast cancer diagnosis showed a positive correlation with age (P < 0.001) and a negative correlation with renal function and vitamin B12 (all P < 0.02), but no statistical association was found with BMI or tumor stage (P > 0.6). Between matched pairs, no significant difference was observed in MMA levels, after adjusting for kidney function and age (P = 0.19). Additionally, in a mouse model, a significant decline in MMA levels was observed in the tumor-bearing group compared to the group without tumors before and after tumor establishment or at identical times for the control group (P = 0.03). CONCLUSION: Baseline serum MMA levels in patients with breast cancer are not correlated with secondary distant metastasis. Evidence in the mouse model suggests that the presence of a tumor perturbates MMA levels.


Subject(s)
Breast Neoplasms , Methylmalonic Acid , Neoplasm Metastasis , Humans , Female , Methylmalonic Acid/blood , Animals , Middle Aged , Mice , Breast Neoplasms/blood , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Aged , Adult , Aging/blood , Triple Negative Breast Neoplasms/blood , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/diagnosis , Neoplasm Staging , Age Factors
3.
Geroscience ; 46(2): 1489-1498, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37632634

ABSTRACT

Methylmalonic acid (MMA), a by-product of propionate metabolism, is known to increase with age. This study investigates the potential of serum MMA concentrations as a biomarker for age-related clinical frailty in older patients with breast cancer. One hundred nineteen patients ≥ 70 years old with early-stage breast cancer were included (median age 76 years). G8 screening, full geriatric assessment, clinical parameters (i.e., estimated glomerular filtration rate (eGFR) and body mass index (BMI)), and serum sample collection were collected at breast cancer diagnosis before any therapy was administered. MMA concentrations were measured via liquid chromatography with tandem mass spectrometry. MMA concentrations significantly increased with age and eGFR (all P < 0.001) in this older population. The group with an abnormal G8 (≤ 14, 51% of patients) had significantly higher MMA levels than the group with normal G8 (> 14, 49%): 260 nmol/L vs. 188 nmol/L, respectively (P = 0.0004), even after correcting for age and eGFR (P = 0.001). Furthermore, in the detailed assessment, MMA concentrations correlated most with mobility (Eastern Cooperative Oncology Group (ECOG) Performance Status and Activities of Daily Living (ADL) tools, all P ≤ 0.02), comorbidity (Charlson Comorbidity Index (CCI) tool, P = 0.005), and polypharmacy (P < 0.001), whereas no significant associations were noted for instrumental ADL (IADL), Mini-Mental State Examination (MMSE), Geriatric Depression Scale-15 (GDS15), Mini Nutritional Assessment-Short Form (MNA-SF), and pain (all P > 0.1). In addition, our results showed that higher MMA levels correlate with poor overall survival in breast cancer patients (P = 0.003). Elevated serum MMA concentrations at initial diagnosis are significantly associated, not only with age but also independently with clinical frailty, suggesting a possible influence of MMA on clinical frailty in older patients with early-stage breast cancer.


Subject(s)
Breast Neoplasms , Frailty , Humans , Aged , Female , Frailty/diagnosis , Frailty/complications , Breast Neoplasms/diagnosis , Methylmalonic Acid , Activities of Daily Living , Comorbidity
4.
Nat Cancer ; 4(3): 344-364, 2023 03.
Article in English | MEDLINE | ID: mdl-36732635

ABSTRACT

Metabolic rewiring is often considered an adaptive pressure limiting metastasis formation; however, some nutrients available at distant organs may inherently promote metastatic growth. We find that the lung and liver are lipid-rich environments. Moreover, we observe that pre-metastatic niche formation increases palmitate availability only in the lung, whereas a high-fat diet increases it in both organs. In line with this, targeting palmitate processing inhibits breast cancer-derived lung metastasis formation. Mechanistically, breast cancer cells use palmitate to synthesize acetyl-CoA in a carnitine palmitoyltransferase 1a-dependent manner. Concomitantly, lysine acetyltransferase 2a expression is promoted by palmitate, linking the available acetyl-CoA to the acetylation of the nuclear factor-kappaB subunit p65. Deletion of lysine acetyltransferase 2a or carnitine palmitoyltransferase 1a reduces metastasis formation in lean and high-fat diet mice, and lung and liver metastases from patients with breast cancer show coexpression of both proteins. In conclusion, palmitate-rich environments foster metastases growth by increasing p65 acetylation, resulting in a pro-metastatic nuclear factor-kappaB signaling.


Subject(s)
Lysine Acetyltransferases , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Acetylation , Acetyl Coenzyme A/metabolism , Palmitates , Lysine Acetyltransferases/metabolism
5.
Front Oncol ; 12: 988872, 2022.
Article in English | MEDLINE | ID: mdl-36338708

ABSTRACT

Glioblastoma is a highly lethal grade of astrocytoma with very low median survival. Despite extensive efforts, there is still a lack of alternatives that might improve these prospects. We uncovered that the chemotherapeutic agent temozolomide impinges on fatty acid synthesis and desaturation in newly diagnosed glioblastoma. This response is, however, blunted in recurring glioblastoma from the same patient. Further, we describe that disrupting cellular fatty acid homeostasis in favor of accumulation of saturated fatty acids such as palmitate synergizes with temozolomide treatment. Pharmacological inhibition of SCD and/or FADS2 allows palmitate accumulation and thus greatly augments temozolomide efficacy. This effect was independent of common GBM prognostic factors and was effective against cancer cells from recurring glioblastoma. In summary, we provide evidence that intracellular accumulation of saturated fatty acids in conjunction with temozolomide based chemotherapy induces death in glioblastoma cells derived from patients.

6.
Cell Rep ; 41(7): 111639, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36384124

ABSTRACT

T cells dynamically rewire their metabolism during an immune response. We applied single-cell RNA sequencing to CD8+ T cells activated and differentiated in vitro in physiological medium to resolve these metabolic dynamics. We identify a differential time-dependent reliance of activating T cells on the synthesis versus uptake of various non-essential amino acids, which we corroborate with functional assays. We also identify metabolic genes that potentially dictate the outcome of T cell differentiation, by ranking them based on their expression dynamics. Among them, we find asparagine synthetase (Asns), whose expression peaks for effector T cells and decays toward memory formation. Disrupting these expression dynamics by ASNS overexpression promotes an effector phenotype, enhancing the anti-tumor response of adoptively transferred CD8+ T cells in a mouse melanoma model. We thus provide a resource of dynamic expression changes during CD8+ T cell activation and differentiation, and identify ASNS expression dynamics as a modulator of CD8+ T cell differentiation.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma , Mice , Animals , Single-Cell Analysis , Lymphocyte Activation , Cell Differentiation , Melanoma/metabolism , Disease Models, Animal
8.
Nature ; 605(7911): 747-753, 2022 05.
Article in English | MEDLINE | ID: mdl-35585241

ABSTRACT

Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs1. Genetic, transcriptional and translational heterogeneity contributes to this dynamic process2,3. Metabolic heterogeneity has also been observed4, yet its role in cancer progression is less explored. Here we find that the loss of phosphoglycerate dehydrogenase (PHGDH) potentiates metastatic dissemination. Specifically, we find that heterogeneous or low PHGDH expression in primary tumours of patients with breast cancer is associated with decreased metastasis-free survival time. In mice, circulating tumour cells and early metastatic lesions are enriched with Phgdhlow cancer cells, and silencing Phgdh in primary tumours increases metastasis formation. Mechanistically, Phgdh interacts with the glycolytic enzyme phosphofructokinase, and the loss of this interaction activates the hexosamine-sialic acid pathway, which provides precursors for protein glycosylation. As a consequence, aberrant protein glycosylation occurs, including increased sialylation of integrin αvß3, which potentiates cell migration and invasion. Inhibition of sialylation counteracts the metastatic ability of Phgdhlow cancer cells. In conclusion, although the catalytic activity of PHGDH supports cancer cell proliferation, low PHGDH protein expression non-catalytically potentiates cancer dissemination and metastasis formation. Thus, the presence of PHDGH heterogeneity in primary tumours could be considered a sign of tumour aggressiveness.


Subject(s)
Breast Neoplasms , Neoplasm Metastasis , Phosphoglycerate Dehydrogenase , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Female , Gene Silencing , Humans , Mice , Phosphoglycerate Dehydrogenase/genetics , Serine/metabolism
9.
Cell Rep ; 37(13): 110171, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34965415

ABSTRACT

Macrophages are often prominently present in the tumor microenvironment, where distinct macrophage populations can differentially affect tumor progression. Although metabolism influences macrophage function, studies on the metabolic characteristics of ex vivo tumor-associated macrophage (TAM) subsets are rather limited. Using transcriptomic and metabolic analyses, we now reveal that pro-inflammatory major histocompatibility complex (MHC)-IIhi TAMs display a hampered tricarboxylic acid (TCA) cycle, while reparative MHC-IIlo TAMs show higher oxidative and glycolytic metabolism. Although both TAM subsets rapidly exchange lactate in high-lactate conditions, only MHC-IIlo TAMs use lactate as an additional carbon source. Accordingly, lactate supports the oxidative metabolism in MHC-IIlo TAMs, while it decreases the metabolic activity of MHC-IIhi TAMs. Lactate subtly affects the transcriptome of MHC-IIlo TAMs, increases L-arginine metabolism, and enhances the T cell suppressive capacity of these TAMs. Overall, our data uncover the metabolic intricacies of distinct TAM subsets and identify lactate as a carbon source and metabolic and functional regulator of TAMs.


Subject(s)
Carcinoma, Lewis Lung/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Lactates/metabolism , Lung Neoplasms/pathology , T-Lymphocytes/immunology , Tumor Microenvironment , Tumor-Associated Macrophages/immunology , Animals , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/immunology , Carcinoma, Lewis Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Female , Glycolysis , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Major Histocompatibility Complex , Metabolome , Mice , Mice, Inbred C57BL , Transcriptome
10.
Drug Saf ; 44(7): 811-823, 2021 07.
Article in English | MEDLINE | ID: mdl-34115324

ABSTRACT

INTRODUCTION: The adjuvanted recombinant zoster vaccine (RZV) has demonstrated high efficacy against herpes zoster in older adults and immunocompromised populations. We present comprehensive safety data from six clinical trials in immunocompromised populations (autologous hematopoietic stem cell transplant and renal transplant recipients, patients with hematologic malignancies, patients with solid tumors, and human immunodeficiency virus-infected adults) who are at an increased risk of herpes zoster. METHODS: In all trials, immunocompromised adults ≥ 18 years of age were administered RZV or placebo. Safety was evaluated in the total vaccinated cohort. Solicited adverse events (AEs) were collected for 7 days and unsolicited AEs for 30 days after each dose. Serious AEs, fatal serious AEs, and potential immune-mediated diseases were collected from dose 1 until 12 months post-last dose or study end. Data were pooled for solicited AEs; unsolicited AEs, (fatal) serious AEs, and potential immune-mediated diseases were analyzed for each individual trial. All AEs were analyzed for sub-strata of adults 18-49 years of age and ≥ 50 years of age. RESULTS: In total, 1587 (RZV) and 1529 (placebo) adults were included in the pooled total vaccinated cohort. Solicited AEs were more common after RZV than placebo, were generally more common in the younger age stratum, and were mostly mild to moderate and resolved within 3 days (median duration). Unsolicited AEs and serious AEs were in line with underlying diseases and therapies. Across studies, the percentage of adults reporting one or more unsolicited AE was comparable between RZV and placebo, irrespective of age stratum. The percentage of adults reporting one or more serious AE, fatal serious AE, or potential immune-mediated diseases was generally similar for RZV and placebo, irrespective of age stratum. Overall, no safety concerns were identified. CONCLUSIONS: Recombinant zoster vaccine has a clinically acceptable safety profile. With the previously published vaccine efficacy and immunogenicity results, these data support a favorable benefit-risk profile of RZV vaccination in immunocompromised populations who are at an increased risk of herpes zoster.


Varicella zoster virus leads to chickenpox after primary infection and herpes zoster upon reactivation of the latent virus. Older adults and immunocompromised people, whose immune system is impaired because of the age-related decline in immunity and their underlying disease and/or treatment, respectively, are at an increased risk of herpes zoster and its complications. Recombinant zoster vaccine has been approved to prevent herpes zoster and its complications in adults aged ≥ 50 years in over 30 countries. In Europe, the vaccine has recently received approval to expand its use in adults aged 18 years or older who are at an increased risk of herpes zoster. We present an overview of the safety data from six clinical trials in immunocompromised patients vaccinated with recombinant zoster vaccine. We found that solicited adverse events were more common after the vaccine than placebo but that these were mild to moderate in intensity. Furthermore, the frequency of unsolicited adverse events was similar between the vaccine and placebo, and most of the reported adverse events and severe adverse events (e.g., infections or tumors) could be attributed to the pre-existent diseases and/or therapies. As such, no safety concern was identified following the review of the available clinical data. This overview, together with the published efficacy data in the prevention of herpes zoster and the vaccine immunogenicity, provides useful medical information and supports the use of the recombinant zoster vaccine in an immunocompromised population at an increased risk of herpes zoster.


Subject(s)
Herpes Zoster Vaccine , Herpes Zoster , Immunocompromised Host , Adult , Clinical Trials as Topic , Herpes Zoster/prevention & control , Herpes Zoster Vaccine/adverse effects , Herpesvirus 3, Human , Humans , Vaccines, Synthetic/adverse effects
11.
Cancer Res ; 81(8): 1988-2001, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33687947

ABSTRACT

Hepatic fat accumulation is associated with diabetes and hepatocellular carcinoma (HCC). Here, we characterize the metabolic response that high-fat availability elicits in livers before disease development. After a short term on a high-fat diet (HFD), otherwise healthy mice showed elevated hepatic glucose uptake and increased glucose contribution to serine and pyruvate carboxylase activity compared with control diet (CD) mice. This glucose phenotype occurred independently from transcriptional or proteomic programming, which identifies increased peroxisomal and lipid metabolism pathways. HFD-fed mice exhibited increased lactate production when challenged with glucose. Consistently, administration of an oral glucose bolus to healthy individuals revealed a correlation between waist circumference and lactate secretion in a human cohort. In vitro, palmitate exposure stimulated production of reactive oxygen species and subsequent glucose uptake and lactate secretion in hepatocytes and liver cancer cells. Furthermore, HFD enhanced the formation of HCC compared with CD in mice exposed to a hepatic carcinogen. Regardless of the dietary background, all murine tumors showed similar alterations in glucose metabolism to those identified in fat exposed nontransformed mouse livers, however, particular lipid species were elevated in HFD tumor and nontumor-bearing HFD liver tissue. These findings suggest that fat can induce glucose-mediated metabolic changes in nontransformed liver cells similar to those found in HCC. SIGNIFICANCE: With obesity-induced hepatocellular carcinoma on a rising trend, this study shows in normal, nontransformed livers that fat induces glucose metabolism similar to an oncogenic transformation.


Subject(s)
Carcinoma, Hepatocellular/etiology , Diet, High-Fat , Dietary Fats/metabolism , Glucose/metabolism , Hepatocytes/metabolism , Liver Neoplasms/etiology , Animals , Carcinoma, Hepatocellular/metabolism , Cell Transformation, Neoplastic , Citric Acid Cycle/physiology , Fatty Acids/metabolism , Glucose Tolerance Test , Humans , Lactic Acid/biosynthesis , Lipid Metabolism , Liver Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Obesity/complications , Palmitates/pharmacology , Peroxisomes/metabolism , Proteomics , Pyruvate Carboxylase/metabolism , Random Allocation , Reactive Oxygen Species/metabolism , Serine/metabolism , Transcriptional Activation
12.
Nutrients ; 12(10)2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33023132

ABSTRACT

One-year dietary quality change according to the preceding maximum weight in a lifestyle intervention program (PREDIMED-Plus trial, 55-75-year-old overweight or obese adults; n = 5695) was assessed. A validated food frequency questionnaire was used to assess dietary intake. A total of 3 groups were made according to the difference between baseline measured weight and lifetime maximum reported weight: (a) participants entering the study at their maximum weight, (b) moderate weight loss maintainers (WLM), and (c) large WLM. Data were analyzed by General Linear Model. All participants improved average lifestyle. Participants entering the study at their maximum weight were the most susceptible to improve significantly their dietary quality, assessed by adherence to Mediterranean diet, DII and both healthful and unhealthful provegetarian patterns. People at maximum weight are the most benefitted in the short term by a weight management program. Long term weight loss efforts may also reduce the effect of a weight management program.


Subject(s)
Diet, Healthy/statistics & numerical data , Obesity/therapy , Overweight/therapy , Patient Compliance/statistics & numerical data , Weight Reduction Programs/methods , Aged , Behavior Therapy/methods , Body-Weight Trajectory , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Diet Surveys , Diet, Mediterranean , Female , Humans , Life Style , Linear Models , Longitudinal Studies , Male , Middle Aged , Obesity/complications , Obesity/physiopathology , Overweight/complications , Overweight/physiopathology , Prospective Studies , Treatment Outcome , Weight Loss
13.
Nature ; 585(7824): 283-287, 2020 09.
Article in English | MEDLINE | ID: mdl-32814897

ABSTRACT

The risk of cancer and associated mortality increases substantially in humans from the age of 65 years onwards1-6. Nonetheless, our understanding of the complex relationship between age and cancer is still in its infancy2,3,7,8. For decades, this link has largely been attributed to increased exposure time to mutagens in older individuals. However, this view does not account for the established role of diet, exercise and small molecules that target the pace of metabolic ageing9-12. Here we show that metabolic alterations that occur with age can produce a systemic environment that favours the progression and aggressiveness of tumours. Specifically, we show that methylmalonic acid (MMA), a by-product of propionate metabolism, is upregulated in the serum of older people and functions as a mediator of tumour progression. We traced this to the ability of MMA to induce SOX4 expression and consequently to elicit transcriptional reprogramming that can endow cancer cells with aggressive properties. Thus, the accumulation of MMA represents a link between ageing and cancer progression, suggesting that MMA is a promising therapeutic target for advanced carcinomas.


Subject(s)
Aging/metabolism , Disease Progression , Methylmalonic Acid/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms/pathology , Adult , Aged , Aging/blood , Aging/genetics , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Methylmalonic Acid/blood , Mice , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasms/blood , Neoplasms/genetics , SOXC Transcription Factors/metabolism , Signal Transduction , Transcriptome/genetics , Transforming Growth Factor beta/metabolism
14.
Nat Immunol ; 21(3): 298-308, 2020 03.
Article in English | MEDLINE | ID: mdl-32066953

ABSTRACT

Depleting regulatory T cells (Treg cells) to counteract immunosuppressive features of the tumor microenvironment (TME) is an attractive strategy for cancer treatment; however, autoimmunity due to systemic impairment of their suppressive function limits its therapeutic potential. Elucidating approaches that specifically disrupt intratumoral Treg cells is direly needed for cancer immunotherapy. We found that CD36 was selectively upregulated in intrautumoral Treg cells as a central metabolic modulator. CD36 fine-tuned mitochondrial fitness via peroxisome proliferator-activated receptor-ß signaling, programming Treg cells to adapt to a lactic acid-enriched TME. Genetic ablation of Cd36 in Treg cells suppressed tumor growth accompanied by a decrease in intratumoral Treg cells and enhancement of antitumor activity in tumor-infiltrating lymphocytes without disrupting immune homeostasis. Furthermore, CD36 targeting elicited additive antitumor responses with anti-programmed cell death protein 1 therapy. Our findings uncover the unexplored metabolic adaptation that orchestrates the survival and functions of intratumoral Treg cells, and the therapeutic potential of targeting this pathway for reprogramming the TME.


Subject(s)
CD36 Antigens/immunology , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Apoptosis/immunology , CD36 Antigens/deficiency , CD36 Antigens/genetics , Cell Line, Tumor , Female , Homeostasis/immunology , Humans , Immunotherapy , Lipid Metabolism/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/metabolism , Neoplasms/pathology , PPAR-beta/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Tumor Microenvironment/immunology
15.
Trends Biochem Sci ; 45(3): 185-201, 2020 03.
Article in English | MEDLINE | ID: mdl-31955965

ABSTRACT

Metabolism is at the cornerstone of all cellular functions and mounting evidence of its deregulation in different diseases emphasizes the importance of a comprehensive understanding of metabolic regulation at the whole-organism level. Stable-isotope measurements are a powerful tool for probing cellular metabolism and, as a result, are increasingly used to study metabolism in in vivo settings. The additional complexity of in vivo metabolic measurements requires paying special attention to experimental design and data interpretation. Here, we review recent work where in vivo stable-isotope measurements have been used to address relevant biological questions within an in vivo context, summarize different experimental and data interpretation approaches and their limitations, and discuss future opportunities in the field.


Subject(s)
Cells/metabolism , Isotope Labeling , Animals , Humans
16.
Methods Mol Biol ; 2088: 93-118, 2020.
Article in English | MEDLINE | ID: mdl-31893372

ABSTRACT

Metastasis formation is the leading cause of death in cancer patients. It has recently emerged that cancer cells adapt their metabolism to successfully transition through the metastatic cascade. Consequently, measuring and analyzing the in vivo metabolism of metastases has the potential to reveal novel treatment strategies to prevent metastasis formation. Here, we describe two different metastasis mouse models and how their metabolism can be analyzed with metabolomics and 13C tracer analysis.


Subject(s)
Metabolomics/methods , Neoplasm Metastasis/pathology , Neoplasms/metabolism , Animals , Carbon Isotopes/metabolism , Cell Line, Tumor , Disease Models, Animal , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley
17.
Nature ; 566(7744): 403-406, 2019 02.
Article in English | MEDLINE | ID: mdl-30728499

ABSTRACT

Most tumours have an aberrantly activated lipid metabolism1,2 that enables them to synthesize, elongate and desaturate fatty acids to support proliferation. However, only particular subsets of cancer cells are sensitive to approaches that target fatty acid metabolism and, in particular, fatty acid desaturation3. This suggests that many cancer cells contain an unexplored plasticity in their fatty acid metabolism. Here we show that some cancer cells can exploit an alternative fatty acid desaturation pathway. We identify various cancer cell lines, mouse hepatocellular carcinomas, and primary human liver and lung carcinomas that desaturate palmitate to the unusual fatty acid sapienate to support membrane biosynthesis during proliferation. Accordingly, we found that sapienate biosynthesis enables cancer cells to bypass the known fatty acid desaturation pathway that is dependent on stearoyl-CoA desaturase. Thus, only by targeting both desaturation pathways is the in vitro and in vivo proliferation of cancer cells that synthesize sapienate impaired. Our discovery explains metabolic plasticity in fatty acid desaturation and constitutes an unexplored metabolic rewiring in cancers.


Subject(s)
Fatty Acids/chemistry , Fatty Acids/metabolism , Metabolic Networks and Pathways , Neoplasms/metabolism , Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation , Fatty Acid Desaturases/metabolism , Female , HEK293 Cells , Humans , Male , Mice , Oleic Acids/metabolism , Palmitates/metabolism , Palmitic Acids/metabolism , Stearoyl-CoA Desaturase/metabolism
18.
Methods Mol Biol ; 1862: 187-216, 2019.
Article in English | MEDLINE | ID: mdl-30315469

ABSTRACT

Immune cell function is tightly regulated by cellular metabolism, which in turn is strongly linked to the nutrient availability in the microenvironment surrounding the cells. This link is critical for effector CD8+ T cells which, after activation, must migrate from nutrient-rich environments into nutrient-scarce regions such as the tumor microenvironment. Assessing how nutrient availability modulates the metabolism of effector CD8+ T cells is thus key for understanding how harsh environments may impair their proliferation and effector function. Here, we describe an approach to systematically study the impact of the nutrient microenvironment on the metabolism of effector CD8+ T cells, based on performing stable 13C isotope labeling measurements on in vitro-differentiated murine effector CD8+ T cells.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Metabolomics/methods , Nutrients/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , Carbon Isotopes/chemistry , Cell Differentiation/immunology , Cells, Cultured , Culture Media/analysis , Culture Media/chemistry , Culture Media/metabolism , Lymphocyte Activation/immunology , Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Metabolomics/instrumentation , Mice , Mice, Inbred C57BL , Nutrients/chemistry , Nutrients/immunology , Primary Cell Culture
19.
Phys Chem Chem Phys ; 17(22): 15019-29, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-25988389

ABSTRACT

A pending issue in linking ion mobility measurements to ion structures is that the collisional cross section (CCS, the measured structural parameter in ion mobility spectrometry) of an ion is strongly dependent upon the manner in which gas molecules effectively impinge on and are reemitted from ion surfaces (when modeling ions as fixed structures). To directly examine the gas molecule impingement and reemission processes and their influence, we measured the CCSs of positively charged ions of room temperature ionic liquids 1-ethyl-3-methylimidazolium dicyanamide (EMIM-N(CN)2) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) in N2 using a differential mobility analyzer-mass spectrometer (DMA-MS) and in He using a drift tube mobility spectrometer-mass spectrometer (DT-MS). Cluster ions, generated via electrosprays, took the form (AB)N(A)z, spanning up to z = 20 and with masses greater than 100 kDa. As confirmed by molecular dynamics simulations, at the measurement temperature (∼300 K), such cluster ions took on globular conformations in the gas phase. Based upon their attained charge levels, in neither He nor N2 did the ion-induced dipole potential significantly influence gas molecule-ion collisions. Therefore, differences in the CCSs measured for ions in the two different gases could be primarily attributed to differences in gas molecule behavior upon collision with ions. Overwhelmingly, by comparison of predicted CCSs with selected input impingement-reemission laws to measurements, we find that in N2, gas molecules collide with ions diffusely--they are reemitted at random angles relative to the gas molecule incoming angle--and inelastically. Meanwhile, in He, gas molecules collide specularly and elastically and are emitted from ion surfaces at determined angles. The results can be rationalized on the basis of the momentum transferred per collision; in the case of He, individual gas molecule collisions minimally perturb the atoms within a cluster ion (internal motion), while in the case of N2, individual gas molecules have sufficiently large momentum to alter the internal motion in organic ions.


Subject(s)
Gases/chemistry , Helium/chemistry , Models, Chemical , Molecular Dynamics Simulation , Nitrogen/chemistry , Organic Chemicals/chemistry , Computer Simulation , Diffusion , Ion Transport , Ions/chemistry , Materials Testing
20.
Phys Chem Chem Phys ; 16(38): 20500-13, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25141918

ABSTRACT

The electrical mobilities of hundreds of mass-selected, multiply charged nanodrops (2-6 nm in diameter) of the ionic liquid EMI-BF4 have been measured in air and CO2 at temperatures, T, ranging from 20 to 100 °C, extending previous studies, based on EMI-N(CN)2 nanodrops in air at 20 °C, to other temperatures and drift gases. The known compressibility of EMI-BF4 removes prior slight ambiguities in the mass-based determination of nanodrop diameters. We confirm the previous finding that the collision cross-sections Ω of these nanodrops, inferred from their electrical mobilities, are related to their diameters d via a relation of the form Ω ≈ ξπ/4(d + d(g))(2) (1 + ßε*) (1 + f(Kn))(-1), where ε* is the ratio between the polarization and thermal energies of the ion-gas molecule system at contact, f(Kn) is a continuum-correction that vanishes in the free-molecule limit, and the coefficients dg, ß, and ξ are inferred experimentally as functions of temperature and drift gas. This expression for Ω(d,z) enables determining true (geometric) cross-sections of globular ions from their measured electrical mobilities in molecular gases. We also corroborate prior reports that the drag-enhancement factor ξ, which remains nearly constant with temperature and drift-gas, exceeds slightly the value ξm≈ 1.36 established by Millikan's oil drop measurements. Unexpectedly, the coefficient ß shows a significant temperature dependence, suggesting that the ion-gas molecule scattering process is affected by T. The effective gas-molecule collision diameter dg is seen to decrease with T, and takes a value in excess of 0.45 nm in CO2 at 20 °C, considerably larger than in room-temperature air.

SELECTION OF CITATIONS
SEARCH DETAIL
...