Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
2.
Biosystems ; 235: 105091, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040283

ABSTRACT

A normative model for the emergence of entorhinal grid cells in the brain's navigational system has been proposed (Sorscher et al., 2023. Neuron 111, 121-137). Using computational modeling of place-to-grid cell interactions, the authors characterized the fundamental nature of grid cells through information processing. However, the normative model does not consider certain discoveries that complement or contradict the conditions for such emergence. By briefly reviewing current evidence, we draw some implications on the interplay between place cell replay sequences and intrinsic grid cell oscillations related to the hippocampal-entorhinal navigation system that can extend the normative model.


Subject(s)
Entorhinal Cortex , Hippocampus , Entorhinal Cortex/physiology , Hippocampus/physiology , Neurons/physiology , Cognition , Computer Simulation , Models, Neurological
3.
Sci Rep ; 12(1): 21443, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36509873

ABSTRACT

Navigation is one of the most fundamental skills of animals. During spatial navigation, grid cells in the medial entorhinal cortex process speed and direction of the animal to map the environment. Hippocampal place cells, in turn, encode place using sensory signals and reduce the accumulated error of grid cells for path integration. Although both cell types are part of the path integration system, the dynamic relationship between place and grid cells and the error reduction mechanism is yet to be understood. We implemented a realistic model of grid cells based on a continuous attractor model. The grid cell model was coupled to a place cell model to address their dynamic relationship during a simulated animal's exploration of a square arena. The grid cell model processed the animal's velocity and place field information from place cells. Place cells incorporated salient visual features and proximity information with input from grid cells to define their place fields. Grid cells had similar spatial phases but a diversity of spacings and orientations. To determine the role of place cells in error reduction for path integration, the animal's position estimates were decoded from grid cell activities with and without the place field input. We found that the accumulated error was reduced as place fields emerged during the exploration. Place fields closer to the animal's current location contributed more to the error reduction than remote place fields. Place cells' fields encoding space could function as spatial anchoring signals for precise path integration by grid cells.


Subject(s)
Grid Cells , Place Cells , Animals , Models, Neurological , Entorhinal Cortex , Orientation , Hippocampus , Action Potentials , Space Perception
5.
J Neurosci ; 42(33): 6469-6482, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35831173

ABSTRACT

Atypical sensory processing is now thought to be a core feature of the autism spectrum. Influential theories have proposed that both increased and decreased neural response reliability within sensory systems could underlie altered sensory processing in autism. Here, we report evidence for abnormally increased reliability of visual-evoked responses in layer 2/3 neurons of adult male and female primary visual cortex in the MECP2-duplication syndrome animal model of autism. Increased response reliability was due in part to decreased response amplitude, decreased fluctuations in endogenous activity, and an abnormal decoupling of visual-evoked activity from endogenous activity. Similar to what was observed neuronally, the optokinetic reflex occurred more reliably at low contrasts in mutant mice compared with controls. Retinal responses did not explain our observations. These data suggest that the circuit mechanisms for combining sensory-evoked and endogenous signal and noise processes may be altered in this form of syndromic autism.SIGNIFICANCE STATEMENT Atypical sensory processing is now thought to be a core feature of the autism spectrum. Influential theories have proposed that both increased and decreased neural response reliability within sensory systems could underlie altered sensory processing in autism. Here, we report evidence for abnormally increased reliability of visual-evoked responses in primary visual cortex of the animal model for MECP2-duplication syndrome, a high-penetrance single-gene cause of autism. Visual-evoked activity was abnormally decoupled from endogenous activity in mutant mice, suggesting in line with the influential "hypo-priors" theory of autism that sensory priors embedded in endogenous activity may have less influence on perception in autism.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Autistic Disorder/genetics , Disease Models, Animal , Evoked Potentials, Visual , Female , Male , Mental Retardation, X-Linked , Methyl-CpG-Binding Protein 2/genetics , Mice , Primary Visual Cortex , Reproducibility of Results
6.
Elife ; 102021 12 16.
Article in English | MEDLINE | ID: mdl-34913438

ABSTRACT

The recollection of environmental cues associated with threat or reward allows animals to select the most appropriate behavioral responses. Neurons in the prelimbic (PL) cortex respond to both threat- and reward-associated cues. However, it remains unknown whether PL regulates threat-avoidance vs. reward-approaching responses when an animals' decision depends on previously associated memories. Using a conflict model in which male Long-Evans rats retrieve memories of shock- and food-paired cues, we observed two distinct phenotypes during conflict: (1) rats that continued to press a lever for food (Pressers) and (2) rats that exhibited a complete suppression in food seeking (Non-pressers). Single-unit recordings revealed that increased risk-taking behavior in Pressers is associated with persistent food-cue responses in PL, and reduced spontaneous activity in PL glutamatergic (PLGLUT) neurons during conflict. Activating PLGLUT neurons in Pressers attenuated food-seeking responses in a neutral context, whereas inhibiting PLGLUT neurons in Non-pressers reduced defensive responses and increased food approaching during conflict. Our results establish a causal role for PLGLUT neurons in mediating individual variability in memory-based risky decision-making by regulating threat-avoidance vs. reward-approach behaviors.


Subject(s)
Cues , Neurons/physiology , Prefrontal Cortex/physiology , Reward , Animals , Male , Rats , Rats, Long-Evans
7.
Biosystems ; 208: 104466, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34246689

ABSTRACT

BACKGROUND: The variational Free Energy Principle (FEP) establishes that a neural system minimizes a free energy function of their internal state through environmental sensing entailing beliefs about hidden states in their environment. PROBLEM: Because sensations are drastically reduced during sleep, it is still unclear how a self-organizing neural network can modulate free energy during sleep transitions. GOAL: To address this issue, we study how network's state-dependent changes in energy, entropy and free energy connect with changes at the synaptic level in the absence of sensing during a sleep-like transition. APPROACH: We use simulations of a physically plausible, environmentally isolated neuronal network that self-organize after inducing a thalamic input to show that the reduction of non-variational free energy depends sensitively upon thalamic input at a slow, rhythmic Poisson (delta) frequency due to spike timing dependent plasticity. METHODS: We define a non-variational free energy in terms of the relative difference between the energy and entropy of the network from the initial distribution (prior to activity dependent plasticity) to the nonequilibrium steady-state distribution (after plasticity). We repeated the analysis under different levels of thalamic drive - as defined by the number of cortical neurons in receipt of thalamic input. RESULTS: Entraining slow activity with thalamic input induces a transition from a gamma (awake-like state) to a delta (sleep-like state) mode of activity, which can be characterized through a modulation of network's energy and entropy (non-variational free energy) of the ensuing dynamics. The self-organizing response to low and high thalamic drive also showed characteristic differences in the spectrum of frequency content due to spike timing dependent plasticity. CONCLUSIONS: The modulation of this non-variational free energy in a network that self-organizes, seems to be an organizational network principle. This could open a window to new empirically testable hypotheses about state changes in a neural network.


Subject(s)
Entropy , Heuristics/physiology , Neural Networks, Computer , Sleep/physiology , Delta Rhythm/physiology , Humans , Neurons/physiology , Thalamus/physiology , Wakefulness/physiology
8.
Cereb Cortex ; 28(8): 2675-2684, 2018 08 01.
Article in English | MEDLINE | ID: mdl-28637171

ABSTRACT

Natural viewing often consists of sequences of brief fixations to image patches of different structure. Whether and how briefly presented sequential stimuli are encoded in a temporal-position manner is poorly understood. Here, we performed multiple-electrode recordings in the visual cortex (area V4) of nonhuman primates (Macaca mulatta) viewing a sequence of 7 briefly flashed natural images, and measured correlations between the cue-triggered population response in the presence and absence of the stimulus. Surprisingly, we found significant correlations for images occurring at the beginning and the end of a sequence, but not for those in the middle. The correlation strength increased with stimulus exposure and favored the image position in the sequence rather than image identity. These results challenge the commonly held view that images are represented in visual cortex exclusively based on their informational content, and indicate that, in the absence of sensory information, neuronal populations exhibit reactivation of stimulus-evoked responses in a way that reflects temporal position within a stimulus sequence.


Subject(s)
Action Potentials/physiology , Attention/physiology , Imagination , Neurons/physiology , Visual Cortex/cytology , Visual Pathways/physiology , Analysis of Variance , Animals , Cues , Macaca mulatta , Photic Stimulation , Psychophysics
9.
J Neural Eng ; 12(5): 056005, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26269496

ABSTRACT

OBJECTIVE: Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. APPROACH: To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. MAIN RESULTS: We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. SIGNIFICANCE: We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.


Subject(s)
Electrodes, Implanted , Electroencephalography/instrumentation , Evoked Potentials/physiology , Monitoring, Ambulatory/instrumentation , Neocortex/physiology , Wireless Technology/instrumentation , Animals , Computer Communication Networks/instrumentation , Electric Power Supplies , Equipment Design , Equipment Failure Analysis , Humans , Macaca fascicularis , Macaca mulatta , Male , Miniaturization , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted/instrumentation
10.
Biol Rev Camb Philos Soc ; 89(3): 552-67, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25165799

ABSTRACT

A current challenge in neuroscience, systems and theoretical biology is to understand what properties allow organisms to exhibit and sustain behaviours despite perturbations (behavioural robustness). Indeed, there are still significant theoretical difficulties in this endeavour due to the context-dependent nature of the problem. Contrary to the common view of biological robustness as a phenomenon that emerges internally, this article discusses the hypothesis that behavioural robustness is rooted in dynamical processes that distribute between internal controls, the organism body and the environment. This review highlights the varied perspectives and how they have led to the current focus on robustness as a relational phenomenon. A new perspective is proposed in which robustness is better understood in the context of agent-environment dynamical couplings, in which such couplings are not always the full determinants of robustness. The challenges and limitations of the proposed approach are identified.


Subject(s)
Adaptation, Psychological/physiology , Behavior, Animal , Animals , Environment
11.
Biosystems ; 124: 7-20, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25149273

ABSTRACT

Researchers in diverse fields, such as in neuroscience, systems biology and autonomous robotics, have been intrigued by the origin and mechanisms for biological robustness. Darwinian evolution, in general, has suggested that adaptive mechanisms as a way of reaching robustness, could evolve by natural selection acting successively on numerous heritable variations. However, is this understanding enough for realizing how biological systems remain robust during their interactions with the surroundings? Here, we describe selected studies of bio-inspired systems that show behavioral robustness. From neurorobotics, cognitive, self-organizing and artificial immune system perspectives, our discussions focus mainly on how robust behaviors evolve or emerge in these systems, having the capacity of interacting with their surroundings. These descriptions are twofold. Initially, we introduce examples from autonomous robotics to illustrate how the process of designing robust control can be idealized in complex environments for autonomous navigation in terrain and underwater vehicles. We also include descriptions of bio-inspired self-organizing systems. Then, we introduce other studies that contextualize experimental evolution with simulated organisms and physical robots to exemplify how the process of natural selection can lead to the evolution of robustness by means of adaptive behaviors.


Subject(s)
Artificial Intelligence , Decision Making , Immune System/physiology , Robotics , Humans
12.
Biosystems ; 107(1): 34-51, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21963775

ABSTRACT

Theoretical discussions and computational models of bio-inspired embodied and situated agents are introduced in this article capturing in simplified form the dynamical essence of robust, yet adaptive behavior. This article analyzes the general problem of how the dynamical coupling between internal control (brain), body and environment is used in the generation of specific behaviors. Based on the Evolutionary Robotics (ER) paradigm, four computational models are described to support discussions including descriptions on performance after a series of structural, sensorimotor or mutational perturbations, or are developed in the absence of them. Experimental results suggest that 'dynamic determinacy' - i.e. the continuous presence of a unique dynamical attractor that must be chased during functional behaviors - is a common dynamic phenomenon in the analyzed robust and adaptive agents. These agents show dynamical states that are definitely and unequivocally characterized via transient dynamics toward a unique, yet moving attractor at neural level for coherent actions. This determinacy emerges as a control strategy rooted on behavioral couplings and relies on mechanisms that are distributed on brain, body and environment. Different ways to induce further distribution of behavioral mechanisms are also discussed in this paper from a bio-inspired ER perspective.


Subject(s)
Behavior , Cognition , Models, Biological , Robotics , Systems Biology/methods , Algorithms , Biological Evolution , Computer Simulation , Environment , Genetic Fitness , Humans , Neural Networks, Computer
13.
Biosystems ; 106(2-3): 94-110, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21840371

ABSTRACT

This article investigates the emergence of robust behaviour in agents with dynamically limited controllers (monostable agents), and compares their performance to less limited ones (bistable agents). 'Dynamically limited' here refers to a reduced quantity of steady states that an agent controller exhibits when it does not receive stimulus from the environment. Agents are evolved for categorical perception, a minimal cognitive task, and must correlate approaching or avoiding movements based on (two) different types of objects. Results indicate a significant tendency to better behavioural robustness by monostable in contrast to bistable agents in the presence of sensorimotor, mutational, and structural perturbations. Discussions here focus on a further dependence to coupled dynamics by the former agents to explain such a tendency.


Subject(s)
Behavior , Cognition , Environment , Models, Theoretical , Robotics , Systems Biology/methods , Computer Simulation , Evolution, Molecular
14.
Biosystems ; 105(1): 49-61, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21466836

ABSTRACT

The emergence of a unified cognitive behaviour relies on the coordination of specialized components that distribute across a 'brain', body and environment. Although a general dynamical mechanism involved in agent-environment integration is still largely unknown for behavioural robustness, discussions here are focussed on one of the most plausible candidate: the formation of distributed mechanisms working in transient during agent-environment coupling. This article provides discussions on this sort of coordination based on a mobile object-tracking task with situated, embodied and minimal agents, and tests for robust yet adaptive behaviour. The proposed scenario provides examples of behavioural mechanisms that counterbalance the functional organization of internal control activity and agents' situatedness to enable the evolution of a two-agent interaction task. Discussions in this article suggest that future studies of distributed cognition should take into account that there are at least two possible modes of interpreting distributed mechanisms and that these have a qualitatively different effect on behavioural robustness.


Subject(s)
Behavior , Cognition , Models, Biological , Robotics , Systems Biology , Algorithms , Biological Evolution , Computer Simulation , Environment , Genetic Fitness , Neural Networks, Computer
15.
Biosystems ; 104(2-3): 109-17, 2011.
Article in English | MEDLINE | ID: mdl-21315135

ABSTRACT

Behavioural robustness at antibody and immune network level is discussed. The robustness of the immune response that drives an autonomous mobile robot is examined with two computational experiments in the autonomous mobile robots trajectory generation context in unknown environments. The immune response is met based on the immune network metaphor for different low-level behaviours coordination. These behaviours are activated when a robot sense the appropriate conditions in the environment in relation to the network current state. Results are obtained over a case study in computer simulation as well as in laboratory experiments with a Khepera II microrobot. In this work, we develop a set of tests where such an immune response is externally perturbed at network or low-level behavioural modules to analyse the robust capacity of the system to unexpected perturbations. Emergence of robust behaviour and high-level immune response relates to the coupling between behavioural modules that are selectively engaged with the environment based on immune response. Experimental evidence leads discussions on a dynamical systems perspective of behavioural robustness in artificial immune systems that goes beyond the isolated immune network response.


Subject(s)
Antibodies/immunology , Immune System/immunology , Robotics/methods , Signal Transduction/immunology , Animals , Antigens/immunology , Autonomic Nervous System/immunology , Behavior , Behavior, Animal , Computer Simulation , Environment , Humans , Models, Immunological
16.
Biosystems ; 103(1): 45-56, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20932875

ABSTRACT

In this work, based on behavioural and dynamical evidence, a study of simulated agents with the capacity to change feedback from their bodies to accomplish a one-legged walking task is proposed to understand the emergence of coupled dynamics for robust behaviour. Agents evolve with evolutionary-defined biases that modify incoming body signals (sensory offsets). Analyses on whether these agents show further dependence to their environmental coupled dynamics than others with no feedback control is described in this article. The ability to sustain behaviours is tested during lifetime experiments with mutational and sensory perturbations after evolution. Using dynamical systems analysis, this work identifies conditions for the emergence of dynamical mechanisms that remain functional despite sensory perturbations. Results indicate that evolved agents with evolvable sensory offset depends not only on where in neural space the state of the neural system operates, but also on the transients to which the inner-system was being driven by sensory signals from its interactions with the environment, controller, and agent body. Experimental evidence here leads discussions on a dynamical systems perspective on behavioural robustness that goes beyond attractors of controller phase space.


Subject(s)
Computer Simulation , Insecta/physiology , Walking/physiology , Animals , Biological Evolution , Feedback , Humans , Models, Theoretical , Motor Neurons/physiology , Robotics , Systems Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...