Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Surg Res ; 301: 118-126, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925098

ABSTRACT

INTRODUCTION: Sleeve gastrectomy (SG), results in improvement in hypertension. We have previously published that rodent SG improves hypertension independent of weight loss associated with unique shifts in the gut microbiome. We tested if the gut microbiome directly improves blood pressure by performing fecal material transfer (FMT) from post-SG rats to surgery-naïve animals. METHODS: We performed SG or Sham surgery in male, Zucker rats (n = 6-7) with obesity. Stool was collected postop from surgical donors for treatment of recipient rats. Three nonsurgical groups received daily, oral consumption of SG stool, sham stool, or vehicle alone (Nutella) for 10 wk (n = 7-8). FMT treatment was assessed for effects on body weight, food intake, oral glucose tolerance, and blood pressure. Genomic deoxyribonucleic acid of stool from donor and recipient groups were sequenced by 16S ribosomal ribonucleic acid and analyzed for diversity, abundance, and importance. RESULTS: Ten weeks of SG-FMT treatment significantly lowered systolic blood pressures in surgery-naïve, recipient rats compared to vehicle treatment alone (126.8 ± 13.3 mmHg versus 151.8 ± 12.2 mmHg, P = 0.001). SG-FMT treatment also significantly altered beta diversity metrics compared to Sham-FMT and vehicle treatment. In random forest analysis, amplicon sequence variant level significantly predicted FMT group, P = 0.01. CONCLUSIONS: We have found a direct link between gut microbial changes after SG and regulation of blood pressure. Future mechanistic studies are required to learn what specific gut microbial changes are required to induce improvements in obesity-associated hypertension and translation to clinical, metabolic surgery.

2.
Surg Endosc ; 37(2): 1476-1486, 2023 02.
Article in English | MEDLINE | ID: mdl-35768736

ABSTRACT

INTRODUCTION: Roux-en-Y gastric bypass (RYGB) significantly alters the gut microbiome and may be a mechanism for post-operative cardiovascular disease improvement. We have previously found an association between the class of peri-operative, intravenous antibiotic administered at the time of RYGB and the resolution rate of hypertension suggesting the gut microbiome as a mechanism. In this study, we performed a prospective study of RYGB to determine if a single intravenous antibiotic could alter the gastrointestinal microbial composition. METHODS: Patients undergoing RYGB were randomized to a single, peri-operative antibiotic of intravenous cefazolin (n = 8) or clindamycin (n = 8). Stool samples were collected from four-time points: 2 weeks pre-op (- 2w), 2 days pre-op (- 2d), 2 weeks post-op (+ 2w) and 3 months post-op (+ 3m). Stool samples were processed for genomic DNA followed by Illumina 16S rRNA gene sequencing and shotgun metagenomic sequencing (MGS). RESULTS: A total of 60 stool samples (- 2w, n = 16; - 2d, n = 15; + 2w, n = 16; + 3m, n = 13) from 16 patients were analyzed. 87.5% of patients were female with an average age of 48.6 ± 12.2 years and pre-operative BMI of 50.9 ± 23.3 kg/m2. RYGB induced statistically significant differences in alpha and beta diversity. There were statistically significant differences in alpha diversity at + 2w and beta diversity at + 3m due to antibiotic treatment. MGS revealed significantly distinct gut microbiota with 11 discriminatory metagenomic assembled genomes driven by antibiotic treatment at 3 months post-op, including increased Bifidobacterium spp. with clindamycin. CONCLUSION: RYGB induces significant changes in the gut microbiome at 2 weeks that are maintained 3 months after surgery. However, the single peri-operative dose of antibiotic administered at the time of RYGB induces unique and persisting changes to the gut microbiome that are antibiotic-specific. Increased Bifidobacterium spp. with clindamycin administration may improve the metabolic efficacy of RYGB when considering gut-microbiome driven mechanisms for blood pressure resolution.


Subject(s)
Gastric Bypass , Gastrointestinal Microbiome , Obesity, Morbid , Humans , Female , Adult , Middle Aged , Male , Gastrointestinal Microbiome/physiology , Anti-Bacterial Agents , Clindamycin , Prospective Studies , RNA, Ribosomal, 16S , Obesity, Morbid/surgery
4.
J Gastrointest Surg ; 26(8): 1607-1618, 2022 08.
Article in English | MEDLINE | ID: mdl-35618993

ABSTRACT

BACKGROUND: The gastrointestinal hormone glucagon-like peptide-1 (GLP-1) is increased after sleeve gastrectomy (SG). Rat and clinical studies support, while mouse studies refute, a role for GLP-1R signaling after SG. Therefore, we developed a global GLP-1R knockout (KO) rat to test the hypothesis that a functional GLP-1R is critical to induce weight loss and metabolic disease improvement after SG. METHODOLOGY: A 4 bp deletion was created in exon 2 of the GLP-1R gene on a Lewis strain background to create a global GLP-1R KO rat. KO and Lewis rats were placed on a high-fat or low-fat diet and phenotyped followed by SG or Sham surgery and assessed for the effect of GLP-1R KO on surgical and metabolic efficacy. RESULTS: Loss of the GLP-1R created an obesity-prone rodent without changes in energy expenditure. Both male and female KO rats had significantly greater insulin concentrations after an oral glucose gavage, augmented by a high-fat diet, compared to Lewis rats despite similar glucose concentrations. GLP-1R KO caused hepatomegaly and increased triglyceride deposition compared to Lewis rats. We found no difference between SG GLP-1R KO and Lewis groups when considering efficacy on body weight, glucose tolerance, and a robustly preserved improvement in fatty liver disease. CONCLUSIONS: Loss of the GLP-1R in rats resulted in increased adiposity, insulin resistance, and severe steatosis. A functional GLP-1R is not critical to the metabolic efficacy of SG in Lewis rats, similar to mouse studies, but importantly including steatosis, supporting a GLP-1R-independent mechanism for the improvement in fatty liver disease after SG.


Subject(s)
Diet, High-Fat , Fatty Liver , Glucagon-Like Peptide-1 Receptor/metabolism , Animals , Fatty Liver/etiology , Fatty Liver/surgery , Female , Gastrectomy/methods , Glucagon , Glucagon-Like Peptide Receptors , Glucose/metabolism , Male , Mice , Obesity/surgery , Rats , Rats, Inbred Lew
SELECTION OF CITATIONS
SEARCH DETAIL