Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Med Res Rev ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38367227

ABSTRACT

Ovarian cancer is the most lethal gynecological cancer, with a survival rate of approximately 40% at five years from the diagno. The first-line treatment consists of cytoreductive surgery combined with chemotherapy (platinum- and taxane-based drugs). To date, the main prognostic factor is related to the complete surgical resection of tumor lesions, including occult micrometastases. The presence of minimal residual diseases not detected by visual inspection and palpation during surgery significantly increases the risk of disease relapse. Intraoperative fluorescence imaging systems have the potential to improve surgical outcomes. Fluorescent tracers administered to the patient may support surgeons for better real-time visualization of tumor lesions during cytoreductive procedures. In the last decade, consistent with the discovery of an increasing number of ovarian cancer-specific targets, a wide range of fluorescent agents were identified to be employed for intraoperatively detecting ovarian cancer. Here, we present a collection of fluorescent probes designed and developed for fluorescence-guided ovarian cancer surgery. Original articles published between 2011 and November 2022 focusing on fluorescent probes, currently under preclinical and clinical investigation, were searched in PubMed. The keywords used were targeted detection, ovarian cancer, fluorescent probe, near-infrared fluorescence, fluorescence-guided surgery, and intraoperative imaging. All identified papers were English-language full-text papers, and probes were classified based on the location of the biological target: intracellular, membrane, and extracellular.

2.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276008

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG), affecting children aged 4-7 years, is a rare, aggressive tumor that originates in the pons and then spreads to nearby tissue. DIPG is the leading cause of death for pediatric brain tumors due to its infiltrative nature and inoperability. Radiotherapy has only a palliative effect on stabilizing symptoms. In silico and preclinical studies identified ONC201 as a cytotoxic agent against some human cancer cell lines, including DIPG ones. A single-crystal X-ray analysis of the complex of the human mitochondrial caseinolytic serine protease type C (hClpP) and ONC201 (PDB ID: 6DL7) allowed hClpP to be identified as its main target. The hyperactivation of hClpP causes damage to mitochondrial oxidative phosphorylation and cell death. In some DIPG patients receiving ONC201, an acquired resistance was observed. In this context, a wide program was initiated to discover original scaffolds for new hClpP activators to treat ONC201-non-responding patients. Harmaline, a small molecule belonging to the chemical class of ß-carboline, was identified through Fingerprints for Ligands and Proteins (FLAP), a structure-based virtual screening approach. Molecular dynamics simulations and a deep in vitro investigation showed interesting information on the interaction and activation of hClpP by harmaline.

3.
Eur J Med Chem ; 266: 116135, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38219659

ABSTRACT

Cyclooxygenase enzymes have distinct roles in cardiovascular, neurological, and neurodegenerative disease. They are differently expressed in different type of cancers. Specific and selective COXs inhibitors are needed to be used alone or in combo-therapies. Fully understand the differences at the catalytic site of the two cyclooxygenase (COX) isoforms is still opened to investigation. Thus, two series of novel compounds were designed and synthesized in fair to good yields using the highly selective COX-1 inhibitor mofezolac as the lead compound to explore a COX-1 zone formed by the polar residues Q192, S353, H90 and Y355, as well as hydrophobic amino acids I523, F518 and L352. According to the structure of the COX-1:mofezolac complex, hydrophobic amino acids appear to have free volume eventually accessible to the more sterically hindering groups than the methoxy linked to the phenyl groups of mofezolac, in particular the methoxyphenyl at C4-mofezolac isoxazole. Mofezolac bears two methoxyphenyl groups linked to C3 and C4 of the isoxazole core ring. Thus, in the novel compounds, one or both methoxy groups were replaced by the higher homologous ethoxy, normal and isopropyl, normal and tertiary butyl, and phenyl and benzyl. Furthermore, a major difference between the two sets of compounds is the presence of either a methyl or acetic moiety at the C5 of the isoxazole. Among the C5-methyl series, 12 (direct precursor of mofezolac) (COX-1 IC50 = 0.076 µM and COX-2 IC50 = 0.35 µM) and 15a (ethoxy replacing the two methoxy groups in 12; COX-1 IC50 = 0.23 µM and COX-2 IC50 > 50 µM) were still active and with a Selectivity Index (SI = COX-2 IC50/COX-1 IC50) = 5 and 217, respectively. The other symmetrically substituted alkoxyphenyl moietis were inactive at 50 µM final concentration. Among the asymmetrically substituted, only the 16a (methoxyphenyl on C3-isoxazole and ethoxyphenyl on C4-isoxazole) and 16b (methoxyphenyl on C3-isoxazole and n-propoxyphenyl on C4-isoxazole) were active with SI = 1087 and 38, respectively. Among the set of compounds with the acetic moiety, structurally more similar to mofezolac (SI = 6329), SI ranged between 1.4 and 943. It is noteworthy that 17b (n-propoxyphenyl on both C3- and C4-isoxazole) were found to be a COX-2 slightly selective inhibitor with SI = 0.072 (COX-1 IC50 > 50 µM and COX-2 IC50 = 3.6 µM). Platelet aggregation induced by arachidonic acid (AA) can be in vitro suppressed by the synthesized compounds, without affecting of the secondary hemostasia, confirming the biological effect provided by the selective inhibition of COX-1. A positive profile of hemocompatibility in relation to erythrocyte and platelet toxicity was observed. Additionally, these compounds exhibited a positive profile of hemocompatibility and reduced cytotoxicity. Quantitative structure activity relationship (QSAR) models and molecular modelling (Ligand and Structure based virtual screening procedures) provide key information on the physicochemical and pharmacokinetic properties of the COX-1 inhibitors as well as new insights into the mechanisms of inhibition that will be used to guide the development of more effective and selective compounds. X-ray analysis was used to confirm the chemical structure of 14 (MSA17).


Subject(s)
Neurodegenerative Diseases , Humans , Molecular Structure , Cyclooxygenase 2/metabolism , Catalytic Domain , Structure-Activity Relationship , Cyclooxygenase 1/metabolism , Isoxazoles/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Amino Acids
4.
Cancers (Basel) ; 14(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35954427

ABSTRACT

Ovarian cancer is the second most prevalent gynecologic malignancy, and ovarian serous cystadenocarcinoma (OSCA) is the most common and lethal subtype of ovarian cancer. Current screening methods have strong limits on early detection, and the majority of OSCA patients relapse. In this work, we developed and cross-validated a method for detecting gene expression biomarkers able to discriminate OSCA tissues from healthy ovarian tissues and other cancer types with high accuracy. A preliminary ranking-based approach was applied, resulting in a panel of 41 over-expressed genes in OSCA. The RNA quantity gene expression of the 41 selected genes was then cross-validated by using NanoString nCounter technology. Moreover, we showed that the RNA quantity of eight genes (ADGRG1, EPCAM, ESRP1, MAL2, MYH14, PRSS8, ST14 and WFDC2) discriminates each OSCA sample from each healthy sample in our data set with sensitivity of 100% and specificity of 100%. For the other three genes (MUC16, PAX8 and SOX17) in combination, their RNA quantity may distinguish OSCA from other 29 tumor types.

5.
Pharmaceuticals (Basel) ; 15(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35745587

ABSTRACT

The identification and removal of all gross and microscopic tumor to render the patient disease free represents a huge challenge in ovarian cancer treatment. The presence of residual disease is an independent negative prognostic factor. Herein, we describe the synthesis and the "in vitro" evaluation of compounds as cyclooxygenase (COX)-1 inhibitors, the COX-1 isoform being an ovarian cancer biomarker, each bearing fluorochromes with different fluorescence features. Two of these compounds N-[4-(9-dimethylimino-9H-benzo[a]phenoxazin-5-ylamino) butyl]-2-(3,4-bis(4-methoxyphenyl)isoxazol-5-yl)acetamide chloride (RR11) and 3-(6-(4-(2-(3,4-bis(4-methoxyphenyl)isoxazole-5-yl)acetamido)butyl)amino-6-oxohexyl)-2-[7-(1,3-dihydro-1,1-dimethyl-3-ethyl 2H-benz[e]indolin-2-yl-idene)-1,3,5-heptatrienyl]-1,1-dimethyl-3-(6-carboxilato-hexyl)-1H-benz[e]indolium chloride, 23 (MSA14) were found to be potent and selective inhibitors of cyclooxygenase (COX)-1 "in vitro", and thus were further investigated "in vivo". The IC50 values were 0.032 and 0.087 µM for RR11 and 23 (MSA 14), respectively, whereas the COX-2 IC50 for RR11 is 2.4 µM while 23 (MSA14) did not inhibit COX-2 even at a 50 µM concentration. Together, this represented selectivity index = 75 and 874, respectively. Structure-based virtual screening (SBVS) performed with the Fingerprints for Ligands and Proteins (FLAP) software allowed both to differentiate highly active compounds from less active and inactive structures and to define their interactions inside the substrate-binding cavity of hCOX1. Fluorescent probes RR11 and 23 (MSA14), were used for preliminary near-infrared (NIR) fluorescent imaging (FLI) in human ovarian cancer (OVCAR-3 and SKOV-3) xenograft models. Surprisingly, a tumor-specific signal was observed for both tested fluorescent probes, even though this signal is not linked to the presence of COX-1.

6.
Sci Rep ; 11(1): 4312, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33619313

ABSTRACT

The beneficial effects of Cyclooxygenases (COX) inhibitors on human health have been known for thousands of years. Nevertheless, COXs, particularly COX-1, have been linked to a plethora of human diseases such as cancer, heart failure, neurological and neurodegenerative diseases only recently. COXs catalyze the first step in the biosynthesis of prostaglandins (PGs) and are among the most important mediators of inflammation. All published structural work on COX-1 deals with the ovine isoenzyme, which is easier to produce in milligram-quantities than the human enzyme and crystallizes readily. Here, we report the long-sought structure of the human cyclooxygenase-1 (hCOX-1) that we refined to an R/Rfree of 20.82/26.37, at 3.36 Å resolution. hCOX-1 structure provides a detailed picture of the enzyme active site and the residues crucial for inhibitor/substrate binding and catalytic activity. We compared hCOX-1 crystal structure with the ovine COX-1 and human COX-2 structures by using metrics based on Cartesian coordinates, backbone dihedral angles, and solvent accessibility coupled with multivariate methods. Differences and similarities among structures are discussed, with emphasis on the motifs responsible for the diversification of the various enzymes (primary structure, stability, catalytic activity, and specificity). The structure of hCOX-1 represents an essential step towards the development of new and more selective COX-1 inhibitors of enhanced therapeutic potential.


Subject(s)
Cyclooxygenase 1/chemistry , Models, Molecular , Protein Conformation , Amino Acid Sequence , Animals , Binding Sites , Catalysis , Cyclooxygenase 1/metabolism , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacology , Enzyme Stability , Glycosylation , Humans , Molecular Structure , Protein Binding , Protein Interaction Domains and Motifs , Recombinant Proteins , Sheep , Solvents , Structure-Activity Relationship , Substrate Specificity
7.
Curr Med Chem ; 28(17): 3287-3317, 2021.
Article in English | MEDLINE | ID: mdl-32767913

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG) mainly affects children with a median age of 6-7 years old. It accounts for 10% of all pediatric tumors. Unfortunately, DIPG has a poor prognosis, and the median survival is generally less than 16-24 months independently from the treatment received. Up to now, children with DIPG are treated with focal radiotherapy alone or in combination with antitumor agents. In the last decade, ONC201 known as dopamine receptor antagonist was uncovered, by a high throughput screening of public libraries of compounds, to be endowed with cytotoxic activity against several cancer cell lines. Efforts were made to identify the real ONC201 target, responsible for its antiproliferative effect. The hypothesized targets were the Tumor necrosis factor-Related Apoptosis-Inducing Ligand stimulation (TRAIL), two oncogenic kinases (ERK/AKT system) that target the same tumor-suppressor gene (FOXO3a), dopamine receptors (DRD2 and DRD3 subtypes) and finally the mitochondrial Caseynolitic Protease P (ClpP). ONC201 structure-activity relationship is extensively discussed in this review, together with other two classes of compounds, namely ADEPs and D9, already known for their antibiotic activity but noteworthy to be discussed and studied as potential "leads" for the development of new drugs to be used in the treatment of DIPG. In this review, a detailed and critical description of ONC201, ADEPs, and D9 pro-apoptotic activity is made, with particular attention to the specific interactions established with its targets that also are intimately described. Pubmed published patents and clinical trial reports of the last ten years were used as the bibliographic source.


Subject(s)
Antineoplastic Agents , Astrocytoma , Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Brain Stem Neoplasms/drug therapy , Child , Humans
8.
Eur J Med Chem ; 209: 112919, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33129592

ABSTRACT

Cardiovascular diseases (CVDs) account for over 17 million death globally each year, including arterial thrombosis. Platelets are key components in the pathogenesis of this disease and modulating their activity is an effective strategy to treat such thrombotic events. Cyclooxygenase-1 (COX-1) isoenzyme is involved in platelet activation and is the main target of non-steroidal anti-inflammatory drugs (NSAIDs) and new selective inhibitor research. Inhibitors of general formula mofezolac-spacer-mofezolac (mof-spacer-mof) and mofezolac-spacer-arachidonic acid (mof-spacer-AA) were projected to investigate the possible cross-talk between the two monomers (Eallo and Ecat) forming the COX-1 homodimer. Mofezolac was chosen as either one or two moieties of these molecules being the known most potent and selective COX-1 inhibitor and administrated to humans as Disopain™, then arachidonic acid (AA) was used to develop molecules bearing, in the same compound, in addition to the inhibitor moiety (mofezolac) also the natural COX substrate. Depending on the nature of the spacer, COX-1 and COX-2 activity was differently inhibited by mof-spacer-mof set with a preferential COX-1 inhibition. The highest COX-1 selectivity was exhibited by the compound in which the spacer was the benzidine [N,N'-(biphenyl-4,4'-di-yl)bis (2-[3,4-bis(4-methoxyphenyl)isoxazol-5-yl]acetamide) (15): COX-1 IC50 = 0.08 µM, COX-2 IC50 > 50 µM, Selectivity Index (SI) > 625]. In the case of mof-spacer-AA set, the COX inhibitory potency and also the isoform preference changed. (5Z, 8Z, 11Z, 14Z)-N-(4-{2-[3,4-Bis(4-methoxyphenyl)isoxazol-5-yl]acetamido}butyl)icosa-5,8,11,14-tetraenamide (19) and (5Z, 8Z, 11Z, 14Z)-N-(4'-{2-[3,4-bis(4-methoxyphenyl)isoxazol-5-yl]acetamido}-[1,1'-biphenyl]-4-yl)icosa-5,8,11,14-tetraenamide (21), in which the spacer is the 1,2-diaminobutane or benzidine, respectively, selectively inhibited the COX-2, whereas when the spacer is the 1,4-phenylendiamine [(5Z, 8Z, 11Z, 14Z)-N-(4-{2-[3,4-bis(4-methoxyphenyl)isoxazol-5-yl]acetamido}phenyl)icosa-5,8,11,14-tetraenamide) (20) the COX preference is COX-1 (COX-1 IC50 = 0.05 µM, COX-2 IC50 > 50 µM, with a COX-1 selectivity > 1000). Molecular modelling by using FLAP algorithm shows fundamental interactions of the novel compounds at the entry channel of COX and inside its catalytic cavity. The effect of these mof-spacer-mof and mof-spacer-AA in inhibiting in vitro free arachidonic acid-induced platelet aggregation was also determined. A positive profile of hemocompatibility in relation to their influence on the blood coagulation cascade and erythrocyte toxicity was observed. Cytotoxicity and genotoxicity safety were also found for these two novel sets of compounds.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Arachidonic Acid/chemical synthesis , Cyclooxygenase 1/metabolism , Cyclooxygenase Inhibitors/chemical synthesis , Isoxazoles/chemical synthesis , Thrombosis/drug therapy , Algorithms , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arachidonic Acid/pharmacology , Blood Coagulation/drug effects , Chlorocebus aethiops , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/pharmacology , Erythrocytes/drug effects , Humans , Isoxazoles/pharmacology , Models, Molecular , Protein Binding , Protein Multimerization , Structure-Activity Relationship , Vero Cells
9.
Molecules ; 25(22)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33217958

ABSTRACT

According to the World Health Organization, the major psychiatric and neurodevelopmental disorders include major depression, bipolar disorder, schizophrenia, and autism spectrum disorder. The potential role of inflammation in the onset and progression of these disorders is increasingly being studied. The use of non-steroidal anti-inflammatory drugs (NSAIDs), well-known cyclooxygenase (COX) inhibitors, combined with first-choice specific drugs have been long investigated. The adjunctive administration of COX inhibitors to classic clinical treatments seems to improve the prognosis of people who suffer from psychiatric disorders. In this review, a broad overview of the use of COX inhibitors in the treatment of inflammation-based psychiatric disorders is provided. For this purpose, a critical analysis of the use of COX inhibitors in the last ten years of clinical trials of the major psychiatric disorders was carried out.


Subject(s)
Cyclooxygenase Inhibitors/adverse effects , Cyclooxygenase Inhibitors/therapeutic use , Inflammation/complications , Inflammation/drug therapy , Mental Disorders/complications , Mental Disorders/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Clinical Trials as Topic , Humans , Treatment Outcome
10.
ACS Med Chem Lett ; 11(10): 2048-2050, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33052254

ABSTRACT

PB28, a cyclohexylpiperazine derivative, could be a potential strategy for Covid 19 because in a recent study it has been found more active than hydroxychloroquine without interaction with cardiac proteins. PB28 has been designed, developed, and biologically evaluated in the past decade in our research group. A possible mechanism to explain its surprising anti-COVID-19 activity is suggested..

11.
Neurosci Lett ; 737: 135296, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32777346

ABSTRACT

BACKGROUND: Ischemic stroke is one of the leading causes of mortality and morbidity. The currently available non-invasive therapeutic options are not sufficiently efficacious. Post-ischemic brain is characterized by a prominent inflammatory response. Little is known about the involvement of cyclooxygenase (COX)-1 in the pathophysiology of ischemic stroke. OBJECTIVE: This study was undertaken to examine the effects of a highly selective COX-1 inhibitor - mofezolac - on clinical outcomes and brain inflammatory markers in post-stroke rats. METHODS: Stroke was induced by subjecting rats to permanent middle cerebral artery occlusion (MCAO). Control rats underwent a sham surgery. Rats were treated with mofezolac (50 mg/kg, intraperitoneally [ip]) once daily for 14 days. Control animals were treated with vehicle. Body temperature (BT), neurological score (NS) and cumulative mortality were monitored at different time points. At the end of the experiment, rats were euthanized and three brain regions (hypothalamus, hippocampus and frontal cortex) were extracted. Levels of interleukin (IL)-6, prostaglandin (PG)E2 and tumor necrosis factor (TNF)-α in these brain regions were determined by ELISA kits. RESULTS: BT, NS and cumulative mortality were all significantly higher in post-MCAO rats than in sham-operated rats, irrespective of the treatment given. BT, NS and mortality rate did not differ significantly between mofezolac-treated and vehicle-treated sham-operated animals. BT was significantly lower in mofezolac-treated as compared to vehicle-treated post-MCAO rats. Mofezolac did not significantly alter NS in post-MCAO rats at any time-point. Cumulative 14-day mortality was non-significantly higher in mofezolac-treated as compared to vehicle-treated post-MCAO rats (48 % vs. 21 %, respectively; P = 0.184). Mostly, IL-6 and TNF-α levels did not differ between post-MCAO and sham-operated rats and were not affected by mofezolac treatment. In contrast, mofezolac significantly decreased PGE2 levels in post-MCAO rats' brains. CONCLUSION: Overall, these results suggest that chronic treatment with the selective COX-1 inhibitor mofezolac did not reduce morbidity or mortality in post-stroke rats.


Subject(s)
Brain/pathology , Cyclooxygenase Inhibitors/therapeutic use , Ischemic Stroke/drug therapy , Isoxazoles/therapeutic use , Neuroprotective Agents/therapeutic use , Animals , Disease Models, Animal , Female , Ischemic Stroke/mortality , Ischemic Stroke/pathology , Male , Rats , Rats, Sprague-Dawley
12.
Curr Med Chem ; 27(34): 5675-5715, 2020.
Article in English | MEDLINE | ID: mdl-31419925

ABSTRACT

BACKGROUND: Ovarian cancer is the second most common gynecologic malignancy, accounting for approximately 220,000 deaths annually worldwide. Despite radical surgery and initial high response rates to platinum- and taxane-based chemotherapy, most patients experience a relapse, with a median progression-free survival of only 18 months. Overall survival is approximately 30% at 5 years from the diagnosis. In comparison, patients out from breast cancer are more than 80 % after ten years from the disease discovery. In spite of a large number of published fundamental and applied research, and clinical trials, novel therapies are urgently needed to improve outcomes of the ovarian cancer. The success of new drugs development in ovarian cancer will strongly depend on both fully genomic disease characterization and, then, availability of biomarkers able to identify women likely to benefit from a given new therapy. METHODS: In this review, the focus is given to describe how complex is the diseases under the simple name of ovarian cancer, in terms of cell tumor types, histotypes, subtypes, and specific gene mutation or differently expressed in the tumor with respect the healthy ovary. The first- and second-line pharmacological treatment clinically used over the last fifty years are also described. Noteworthy achievements in vitro and in vivo tested new drugs are also summarized. Recent literature related to up to date ovarian cancer knowledge, its detection by biomarkers and chemotherapy was searched from several articles on Pubmed, Google Scholar, MEDLINE and various Governmental Agencies till April 2019. RESULTS: The papers referenced by this review allow a deep analysis of status of the art in the classification of the several types of ovarian cancer, the present knowledge of diagnosis based on biomarkers and imaging techniques, and the therapies developed over the past five decades. CONCLUSION: This review aims at stimulating more multi-disciplinary efforts to identify a panel of novel and more specific biomarkers to be used to screen patients for a very early diagnosis, to have prognosis and therapy efficacy indications. The desired final goal would be to have available tools allowing to reduce the recurrence rate, increase both the disease progression free interval and of course the overall survival at five years from the diagnosis that today is still very low.


Subject(s)
Ovarian Neoplasms , Breast Neoplasms , Early Detection of Cancer , Female , Humans , Neoplasm Recurrence, Local , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/drug therapy , Prognosis
13.
Future Med Chem ; 11(19): 2547-2562, 2019 10.
Article in English | MEDLINE | ID: mdl-31633399

ABSTRACT

Aim: The σ1 receptor is a druggable target involved in many physiological processes and diseases. To clarify its physiology and derive therapeutic benefit, nine analogs based on the σ1 antagonist PB212 were synthesized replacing the 4-methylpiperidine with basic moieties of varying size and degree of conformational freedom. Results & methodology: 3-Phenylpyrrolidine, 4-phenylpiperidine or granatane derivatives displayed the highest affinity (Ki.#x00A0;= 0.12, 0.31 or 1.03 nM). Calcium flux assays in MCF7σ1 cells indicated that the highest σ1 receptor affinity are σ1 antagonists. Molecular models provided a structural basis for understanding the σ1 affinity and functional activity of the analogs and incorporated Glennon's σ1 pharmacophore model. Conclusion: Herein, we identify new compounds exploitable as therapeutic drug leads or as tools to study σ1 receptor physiology.


Subject(s)
Naphthalenes/chemistry , Naphthalenes/pharmacology , Piperidines/chemistry , Piperidines/pharmacology , Receptors, sigma/antagonists & inhibitors , Receptors, sigma/chemistry , Humans , Models, Molecular , Molecular Structure , Naphthalenes/chemical synthesis , Optical Imaging , Piperidines/chemical synthesis , Receptors, sigma/metabolism , Tumor Cells, Cultured , Sigma-1 Receptor
14.
Eur J Med Chem ; 179: 16-25, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31229884

ABSTRACT

Biomarkers of specific targets are becoming an essential objective for clinical unmet clinical needs to improve diseases early detection and increase patient overall survival. Ovarian cancer is among the highest mortality gynecological cancers. It is asymptomatic and almost always diagnosed at advanced stage. At five years from the first diagnosis the survival rate of ovarian cancer patients is only 30%. Cyclooxygenase (COX)-1 as opposed to COX-2 is known to be overexpressed in ovarian cancer. Therefore, fluorescent probes targeting COX-1 were designed and prepared in fair to good yields for its quantitatively detection in human ovarian cancer cell lines (OVCAR-3 and SKOV-3). In particular, both cytofluorimetric and immunofluorescent experiments showed that N-[4-(9-dimethylimino-9H-benzo[a]phenoxazin-5-ylamino)butyl]-2-(3,4-bis(4-methoxyphenyl)isoxazol-5-yl)acetamide chloride (11) enters into OVCAR-3 cells and is mainly localized on the membrane containing the COX-1. Membrane fluorescence emission represents about 80% of the total fluorescence measured in the whole cell, while the non-specific labeling represents only 20%. This result indicates that the intensity of fluorescence emission is almost exclusively attributable to 11 bound to COX-1 located on the membrane. Furthermore, no diffusion inside the cell occurs. IC50hCOX-1 value of 11 determined by measuring the O2 consumption during the bis-oxygenation of the arachidonic acid catalysed by COX-1 was found to be equal to 1.8 nM. Furthermore, 11 inhibits oCOX-1 with IC50 = 6.85 nM and mCOX-2 with IC50 = 269.5 nM; the corresponding selectivity index SI is equal to 39.3 against oCOX-1. 11 inhibits oCOX-1 at 0 min of incubation with 91% inhibition, whereas in the same time it does not inhibit mCOX-2. Fingerprints for Ligands and Proteins (FLAP) software calculations were performed to justify 11 higher COX-1 inhibitory potency than mofezolac (COX-1 IC50 = 5.1 nM), which in turn is a moiety of 11. Specifically, the two compounds bind differently in the COX-1 active site.


Subject(s)
Cyclooxygenase 1/metabolism , Cyclooxygenase Inhibitors/pharmacology , Fluorescent Dyes/pharmacology , Isoxazoles/pharmacology , Optical Imaging , Ovarian Neoplasms/diagnostic imaging , Cell Line, Tumor , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Dose-Response Relationship, Drug , Female , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , HEK293 Cells , Humans , Isoxazoles/chemical synthesis , Isoxazoles/chemistry , Molecular Structure , Structure-Activity Relationship
15.
Eur J Med Chem ; 164: 59-76, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30590258

ABSTRACT

A set of novel diarylisoxazoles has been projected using mofezolac (1) as a lead compound to investigate structure-inhibitory activity relationships of new compounds and the cyclooxygenases (COXs) catalytic activity. Mofezolac was chosen because is the most potent and selective reversible COX-1 inhibitor [COX-1 IC50 = 0.0079 µM and COX-2 IC50 > 50 µM, with a selectivity index (SI) in favor of COX-1 higher than 6300]. Seventeen new compounds were synthesized in fair to good yields and evaluated for their COXs inhibitory activity and selectivity. SIs ranged between 1 and higher than 1190.3,4-Bis(4-methoxyphenyl)-5-vinylisoxazole (22) has the highest SI with COX-1 IC50 = 0.042 µM and COX-2 IC50 > 50 µM. 1 and 22 were superior to aspirin in inhibiting platelet aggregation (IC50 = 0.45, 0.63 and 1.11 µM, respectively) in human platelet rich plasma (hPRP) assay. They did not induce blood coagulation and hemolysis, and are neither genotoxic nor mutagen. 1 and 22 slightly increase bortezomib cytotoxic effect on multiple myeloma (MM) cell lines (NCI-H929 and RPMI-8226) and affects MM cell cycle and apoptosis when co-administered with the proteasome inhibitor bortezomib, a drug clinically used to treat plasma cell neoplasms including MM. In addition, structure-based binding mode of 1 and 22, through Fingerprints for Ligands and Proteins (FLAG) calculation, allowed to explain the one order of magnitude difference between COX-1 IC50 values of the two compounds. Specifically, the higher inhibitory potency seems due to the formation of a H-bond between COX-1 S530 and the carboxyl, present in 1 and absent in 22.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bortezomib/therapeutic use , Cyclooxygenase 1/metabolism , Cyclooxygenase Inhibitors/chemistry , Isoxazoles/chemistry , Multiple Myeloma/drug therapy , Apoptosis/drug effects , Binding Sites , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cyclooxygenase 1/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/therapeutic use , Humans , Isoxazoles/therapeutic use , Multiple Myeloma/pathology , Platelet Aggregation Inhibitors/pharmacology , Protein Binding , Structure-Activity Relationship
16.
Eur J Med Chem ; 141: 404-416, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29032033

ABSTRACT

Neuroinflammation is the earliest stage of several neurological and neurodegenerative diseases. In the case of neurodegenerative disorders, it takes place about 15-20 years before the appearance of specific neurodegenerative clinical symptoms. Constitutive microglial COX-1 is one of the pro-inflammatory players of the neuroinflammation. Novel compounds 3, 14 and 15 (Galmof0, Galmof5 and Galmof11, respectively) were projected, and their synthetic methodologies developed, by linking by an ester bond, directly or through a C5 or C11 unit linker the highly selective COX-1 inhibitor mofezolac (COXs selectivity index > 6000) to galactose in order to obtain substances capable to cross blood-brain barrier (BBB) and control the CNS inflammatory response. 3, 14 and 15 (Galmofs) were prepared in good to fair yields. Galmof0 (3) was found to be a selective COX-1 inhibitor (COX-1 IC50 = 0.27 µM and COX-2 IC50 = 3.1 µM, selectivity index = 11.5), chemically and metabolically stable, and capable to cross Caco-2 cell monolayer, resembling BBB, probing that its transport is GLUT-1-mediated. Furthermore, Galmof0 (3) powerfully inhibits PGE2 release higher than mofezolac (1) in LPS-stimulated mouse BV2 microglial cell line, a worldwide recognized neuroinflammation model. In addition, Fingerprints for Ligands and Proteins (FLAP) was used to explain the different binding interactions of Galmofs with the COX-1 active site.


Subject(s)
Central Nervous System/drug effects , Cyclooxygenase 1/metabolism , Cyclooxygenase Inhibitors/pharmacology , Galactose/pharmacology , Glucose Transporter Type 1/antagonists & inhibitors , Isoxazoles/pharmacology , Animals , Blood-Brain Barrier/drug effects , Cell Line , Central Nervous System/metabolism , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Dose-Response Relationship, Drug , Galactose/chemistry , Glucose Transporter Type 1/metabolism , Humans , Isoxazoles/chemistry , Mice , Models, Molecular , Molecular Structure , Structure-Activity Relationship
17.
Eur J Med Chem ; 138: 661-668, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-28710965

ABSTRACT

The diarylisoxazole molecular scaffold is found in several NSAIDs, especially those with high selectivity for COX-1. Here, we have determined the structural basis for COX-1 binding to two diarylisoxazoles: mofezolac, which is polar and ionizable, and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6) that has very low polarity. X-ray analysis of the crystal structures of COX-1 bound to mofezolac and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole allowed the identification of specific binding determinants within the enzyme active site, relevant to generate structure/activity relationships for diarylisoxazole NSAIDs.


Subject(s)
Cyclooxygenase 1/metabolism , Cyclooxygenase Inhibitors/pharmacology , Isoxazoles/pharmacology , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Isoxazoles/chemical synthesis , Isoxazoles/chemistry , Molecular Structure , Structure-Activity Relationship
18.
ChemMedChem ; 11(11): 1172-87, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27136372

ABSTRACT

A new set of cyclooxygenase (COX) inhibitors endowed with an additional functionality was explored. These new compounds also contained either rhodamine 6G or 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline, two moieties typical of efflux pump substrates and inhibitors, respectively. Among all the synthesized compounds, two new COX inhibitors with opposite selectivity were discovered: compound 8 [N-(9-{2-[(4-{2-[3-(5-chlorofuran-2-yl)-4-phenylisoxazol-5-yl]acetamido}butyl)carbamoyl]phenyl-6-(ethylamino)-2,7-dimethyl-3H-xanthen-3-ylidene}ethanaminium chloride] was found to be a selective COX-1 inhibitor, whereas 17 (2-[3,4-bis(4-methoxyphenyl)isoxazol-5-yl]-1-[6,7-dimethoxy-3,4-dihydroisoquinolin-2-(1H)-yl]ethanone) was found to be a sub-micromolar selective COX-2 inhibitor. However, both were shown to interact with P-glycoprotein. Docking experiments helped to clarify the molecular aspects of the observed COX selectivity.


Subject(s)
Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/metabolism , Isoxazoles/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Binding Sites , Caco-2 Cells , Catalytic Domain , Cyclooxygenase 1/chemistry , Cyclooxygenase 2/chemistry , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacology , Dogs , Enzyme Activation/drug effects , Humans , Isoxazoles/chemical synthesis , Isoxazoles/metabolism , Isoxazoles/pharmacology , Madin Darby Canine Kidney Cells , Molecular Docking Simulation , Permeability , Structure-Activity Relationship
19.
Eur J Med Chem ; 89: 691-700, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25462276

ABSTRACT

6,7-Dimethoxytetrahydroisoquinoline is widely used as basic moiety in σ2 receptor ligands, in order to provide σ2versus σ1 selectivity. This same moiety is also widely exploited in modulators of P-glycoprotein (P-gp) efflux pump, so that mixed σ2/P-gp agents are often obtained. Deconstruction of 6,7-dimethoxytetrahydroisoquinoline moiety present in the potent mixed σ2/P-gp agent 6,7-dimethoxy-2-[4-[1-(4-fluorophenyl)-1H-indol-3-yl]butyl]-1,2,3,4-tetrahydroisoquinoline (1) could lead to the separation of σ2 affinity from P-gp activity. Therefore, phenethylamino-, benzylamino- and indanamine series were obtained. The NH group was also methylated in the N-phenethylamino series, and ethylated in the benzylamino series, to better match 6,7-dimethoxytetrahydroisoquinoline. The σ2 affinity drastically decreased with the increase of conformational freedom, whereas alkylation of the NH-group was beneficial for σ2 receptor interaction. By contrast, deconstruction of 6,7-dimethoxytetrahydroisoquinoline slightly reduced P-gp activity, with dimethoxy-substituted derivatives displaying potent P-gp interaction. Therefore, 'ring-opened' 6,7-dimethoxytetrahydroisoquinoline derivatives represent a promising strategy to obtain P-gp selective agents devoid of σ2 receptor affinity.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Receptors, sigma/metabolism , Tetrahydroisoquinolines/pharmacology , Animals , Cells, Cultured , Dogs , Molecular Structure , Protein Binding/drug effects , Tetrahydroisoquinolines/chemistry , Tetrahydroisoquinolines/metabolism
20.
J Med Chem ; 57(8): 3314-23, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24697311

ABSTRACT

Despite the promising potentials of σ2 receptors in cancer therapy and diagnosis, there are still ambiguities related to the nature and physiological role of the σ2 protein. With the aim of providing potent and reliable tools to be used in σ2 receptor research, we developed a novel series of fluorescent σ2 ligands on the basis of our previous work, where high-affinity σ2 ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-n-propyl]piperazine (1, PB28) was used as the pharmacophore. Compared to the previous compounds, these novel ligands displayed improved fluorescence and σ2 binding properties, were σ2-specifically taken up by breast tumor cells, and were successfully employed in confocal microscopy. Compound 14, which was the best compromise between pharmacological and fluorescent properties, was successfully employed in flow cytometry, demonstrating its potential to be used as a tool in nonradioactive binding assays for studying the affinity of putative σ2 receptor ligands.


Subject(s)
Piperazines/chemical synthesis , Receptors, sigma/metabolism , Animals , Flow Cytometry , Fluorescence , Guinea Pigs , Humans , Ligands , MCF-7 Cells , Male , Piperazines/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...