Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 107(6): 3631-3641, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38278297

ABSTRACT

Two experiments were conducted to evaluate the effects of a genetically modified corn hybrid with α-amylase expressed in the kernel (AMY) on fermentation profile, aerobic stability, nutrient composition, and starch disappearance of whole-plant corn silage (WPCS) and earlage. Both hybrids, AMY and an isogenic corn hybrid (ISO), were grown in 10 replicated plots (5 for WPCS and 5 for earlage). Samples of each plot were collected at harvest, homogenized, and divided into 5 subsamples which were randomly assigned to 5 storage lengths (0, 30, 60, 90, and 120 d). Both datasets (WPCS and earlage), were analyzed separately as a completely randomized block design in a factorial arrangement of treatments, with a model including the fixed effects of hybrid, storage length, and their interaction, and the random effect of block. Minor differences on fermentation profile were observed between AMY and ISO for WPCS and earlage. An interaction between hybrid and storage length was observed for DM losses in WPCS, where losses were similar at 30, 60 and 90 d, but lower for AMY compared with ISO at 120 d. No effect of hybrid was observed on yeast and mold counts for WPCS or earlage. The aerobic stability of WPCS was greater for AMY than ISO. For earlage, AMY had greater DM losses and aerobic stability than ISO. An interaction between hybrid and storage length was observed for ammonia-N in both WPCS and earlage, where ammonia-N was similar at 0 d but greater for AMY than ISO throughout later storage lengths. A similar interaction was observed for water-soluble carbohydrates (WSC) concentrations in WPCS, where ISO had greater WSC than AMY at 0 d but was similar throughout later storage lengths. However, AMY earlage had a greater WSC concentration throughout storage length, but a lesser magnitude after ensiling. Starch concentration was greater for AMY than ISO in WPCS and earlage. Greater starch disappearances at 0 h and 6 h were observed for ISO in WPCS and earlage. Minor effects on fermentation profile, microbial counts, aerobic stability and nutrient composition suggests that AMY can be ensiled for prolonged periods with no concerns for undesirable fermentation or nutrient losses. However, in situ starch disappearance was lower for AMY compared with ISO.


Subject(s)
Fermentation , Silage , Starch , Zea mays , alpha-Amylases , alpha-Amylases/metabolism , Starch/metabolism , Plants, Genetically Modified , Animals
2.
J Dairy Sci ; 106(12): 8611-8626, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641244

ABSTRACT

We evaluated the effects of supplementing bacterial direct-fed microbial (DFM) on performance, apparent total-tract digestibility, rumen fermentation, and immune parameters of lactating dairy cows. One hundred fourteen multiparous Holstein cows (41 ± 7 DIM) were used in a randomized complete block design with an experiment comprising 14 d of a covariate (pre-experimental sample and data collection) and 91 d of an experimental period. Cows were blocked based on energy-corrected milk (ECM) yield during the covariate period and the following treatments were randomly assigned within each block: (1) control (CON), corn silage-based total mixed ration without DFM; (2) PRO-A, basal diet top-dressed with a mixture of Lactobacillus animalis and Propionibacterium freudenreichii at 3 × 109 cfu/d; and 3) PRO-B, basal diet top-dressed with a mixture of L. animalis, P. freudenreichii, Bacillus subtilis, and Bacillus licheniformis at 11.8 × 109 cfu/d. Milk yield, dry matter intake (DMI), and body weight were measured daily, while milk samples for component analysis were taken on 2 consecutive days of each week of data collection. Feces, urine, rumen, and blood samples were taken during the covariate period, wk 4, 7, 10, and 13 for estimation of digestibility, N-partitioning, rumen fermentation, plasma nutrient status and immune parameters. Treatments had no effect on DMI and milk yield. Fat-corrected milk (3.5% FCM) and milk fat yield were improved with PRO-B, while milk fat percent and feed efficiency (ECM/DMI) tended to increase with PRO-B compared with PRO-A and CON. Crude fat digestibility was greater with PRO-B compared with CON. Feeding CON and PRO-A resulted in higher total volatile fatty acid concentration relative to PRO-B. Percentage of neutrophils tended to be reduced with PRO-A compared with CON and PRO-B. The mean fluorescence intensity (MFI) of anti-CD44 antibody on granulocytes tended to be higher in PRO-B compared with CON. The MFI of anti-CD62L antibody on CD8+ T cells was lower in PRO-A than PRO-B, with PRO-A also showing a tendency to be lower than CON. This study indicates the potential of DFM to improve fat digestibility with consequential improvement in fat corrected milk yield, feed efficiency and milk fat yield by lactating dairy cows. The study findings also indicate that dietary supplementation with DFM may augment immune parameters or activation of immune cells, including granulocytes and T cells; however, the overall effects on immune parameters are inconclusive.


Subject(s)
Animal Feed , Lactation , Female , Cattle , Animals , Lactation/physiology , Animal Feed/analysis , Milk , Diet/veterinary , Digestion , Dietary Supplements/analysis , Rumen
3.
JDS Commun ; 4(4): 255-259, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37521068

ABSTRACT

Recently, the use of cocktail forage mixes in dairy cattle rations has become more common because the mixtures are low-cost, fit well in rotation after a cereal grain forage, and can have similar yield and energy value compared with alfalfa silage. This experiment evaluated the effects of a chemical additive and packing density on the fermentation profile and nutrient composition of cocktail mix silage. The cocktail forage mix (brown-midrib sorghum-sudangrass, Italian ryegrass, red clover, berseem clover, and hairy vetch) was harvested, ensiled in laboratory silos (3.79-L plastic buckets), and allowed to ferment for 30 d. The experiment consisted of 6 treatments, 2 chemical additives [CON (30 mL of distilled water) or ADD (sodium sulfite, sodium metabisulfite, and fungal amylase)], and 3 packing densities [D100, D75, and D50 (100%, 75%, or 50% of the maximum material in laboratory silos, respectively)], for a total of 24 silos (4 replications per treatment combination). No interactions of additive by density were detected for any parameters evaluated. The addition of the chemical additive influenced fermentation profile, with reduced concentrations of total acids, lactic acid, acetic acid, and ethanol in ADD-treated silages. Moreover, D50 reduced concentrations of total acids, lactic acid, and acetic acid compared with D100, but had greater pH and yeast and mold counts. Minimal changes in nutrient composition were detected regardless of treatment. Overall, this study corroborates the importance of a well-packed silage during the ensiling process. Poorly packed cocktail mix silages may be more prone to spoilage based on yeast and mold counts.

4.
J Dairy Sci ; 106(9): 6041-6059, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37474365

ABSTRACT

This study evaluated the physical effectiveness of whole-plant corn silage (CS) particles stratified with the Penn State Particle Separator, composed of 19- and 8-mm-diameter sieves and a pan, for lactating dairy cows. Eight Holstein cows (27.6 ± 2.8 kg/d of milk, 611 ± 74 kg body weight; 152 ± 83 d in milk) were assigned to two 4 × 4 Latin squares (22-d periods, 16-d adaptation), where one square was formed with rumen-cannulated cows. Three CS particle fractions were manually isolated using the 8- and 19-mm diameter sieves and re-ensiled in 200-L drums. The 4 experimental diets were (% dry matter): (1) CON (control): 17% forage neutral detergent fiber (NDF) from CS (basal roughage), 31.5% starch, and 31.9% NDF; (2) PSPan: 17% forage NDF from CS + 9% NDF from CS particles <8 mm, 25.9% starch, and 37.9% NDF; (3) PS8: 17% forage NDF from CS + 9% NDF from CS particles 8 to 19 mm, 25.5% starch, and 38.3% NDF; and (4) PS19: 17% forage NDF from CS + 9% NDF from CS particles >19 mm, 24.9% starch, and 38.8% NDF. Cows fed PS8 had greater dry matter intake and energy-corrected milk yield (22.4 and 26.9 kg/d, respectively) than cows fed CON (20.8 and 24.7 kg/d) and PS19 (21.2 and 24.8 kg/d), but no difference was detected between PSPan (21.6 and 25.8 kg/d) and other treatments. Milk fat concentration was greater for PS8 than CON, with intermediate values for PSPan and PS19. Milk fat yield was greater for cows fed PS8 than CON and PS19, and cows fed PSPan secreted more fat than CON cows but were not different from cows fed the other 2 diets. Cows fed CON had a lower meal frequency than cows fed PSPan, shorter meal and rumination times than PS8, and greater meal size and lower rates of rumination and chewing than the other 3 diets. Total chewing per unit of NDF was higher for PS8 than PSPan, although neither treatment differed from CON or PS19. Cows fed PS19 had higher refusal of feed particles >19 mm than cows fed CON and PSPan. The refusal of dietary NDF and undigested NDF in favor of starch were all greater for PS19 than on the other treatments. Cows fed PS19 had a greater proportion of the swallowed bolus and rumen digesta with particles >19 mm than the other 3 diets. Cows fed CON had the lowest ruminal pH and greatest lactate concentration relative to the other 3 diets. Plasma lipopolysaccharide was higher for cows fed CON and PSPan than for cows fed PS8 and PS19, and serum d-lactate tended to be lower on PSPan than for CON and PS8. In summary, the inclusion of CS fractions in a low-forage fiber diet (CON) reduced signs of ruminal acidosis. Compared with CS NDF <8 and >19 mm, CS NDF with 8- to 19-mm length promoted better rumen health and performance of dairy cows. These results highlight the importance of adjusting CS harvest and formulating dairy diets based on the proportion of particles retained between the 8- and 19-mm sieves.


Subject(s)
Silage , Zea mays , Female , Cattle , Animals , Silage/analysis , Lactation , Digestion , Rumen/metabolism , Fermentation , Milk , Dietary Fiber/metabolism , Diet/veterinary , Starch/metabolism , Lactic Acid/metabolism
5.
J Dairy Sci ; 106(2): 1002-1012, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36543642

ABSTRACT

The objective of this study was to determine the effects of including exogenous amylolytic or fibrolytic enzymes in a diet for high-producing dairy cows on in vitro ruminal fermentation. Eight dual-flow continuous-culture fermentors were used in a replicated 4 × 4 Latin square. The treatments were control (CON), a xylanase and glucanase mixture (T1), an α-amylase mixture (T2), or a xylanase, glucanase, and α-amylase mixture (T3). Treatments were included at a rate of 0.008% of diet dry matter (DM) for T1 and T2 and at 0.02% for T3. All treatments replaced the equivalent amount of soybean meal in the diet compared with CON. All diets were balanced to have the same nutrient composition [30.2% neutral detergent fiber (NDF), 16.1% crude protein (CP), and 30% starch; DM basis], and fermentors were fed 106 g/d divided into 2 feedings. At each feeding, T2 was pipetted into the respective fermentor and an equivalent amount of deionized water was added to each fermentor to eliminate potential variation. Experimental periods were 10 d (7 d for adaptation and 3 d for sample collection). Composite samples of daily effluent were collected and analyzed for volatile fatty acids (VFA), NH3-N, and lactate concentrations, degradability of DM, organic matter, NDF, CP, and starch, and flow and metabolism of N. Samples of fermentor contents were collected from each fermentor at 0, 1, 2, 4, 6, and 8 h after feeding to determine kinetics of pH, NH3-N, lactate, and VFA concentrations over time. All data were analyzed using PROC GLIMMIX of SAS (SAS Institute Inc.), and the repeated variable of time was included for kinetics measurements. Treatment did not affect mean pH, degradability, N flow and metabolism, or the concentrations of VFA, NH3-N, or lactate in the effluent samples. Treatment did not affect pH, acetate:propionate ratio, or the concentrations of lactate, NH3-N, total VFA, acetate, propionate, butyrate, isobutyrate, valerate, or caproate. However, the concentration of total VFA tended to change at each time point depending upon the treatment, and T2 tended to have a greater proportion of 2-methylbutyrate and isovalerate than CON, T1, or T3. As 2-methylbutyrate and isovalerate are branched-chain VFA that are synthesized from branched-chain amino acids, T2 may have an increased fermentation of branched-chain amino acids or decreased uptake by fibrolytic microorganisms. Although we did not observe changes in N metabolism due to the enzymes, there could be changes in microbial populations that utilize branched-chain VFA. Overall, the tested enzymes did not improve in vitro ruminal fermentation in the diet of high-producing dairy cows.


Subject(s)
Lactation , Propionates , Animals , Cattle , Female , alpha-Amylases/metabolism , Animal Feed/analysis , Diet/veterinary , Digestion , Fatty Acids, Volatile/metabolism , Fermentation , Lactates/metabolism , Propionates/metabolism , Rumen/metabolism , Starch/metabolism
6.
Transl Anim Sci ; 6(2): txac044, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35529037

ABSTRACT

Carbohydrates are one of the three macronutrients that provides energy in diets and are classified by their structures. Starch is a nonstructural carbohydrate and polysaccharide made of glucose monomers used for storage in plant cells. When starch makes up greater than 30% of the DM in diets there can be adverse effects on NDF digestibility due to decreases in ruminal pH. Sugars are water soluble carbohydrates that consist of monosaccharide and disaccharide units. Sugars ferment faster than starch because microorganisms in the rumen can ferment carbohydrates at different rates depending on their structure; however, this has not been shown to have negative effects on the ruminal pH. Sources of sugars such as molasses (sucrose) or whey (lactose) can be included in the diet as a partial replacement for starch in dairy cow diets. The purpose of replacing starch with sugars in a diet would be to add differing sources of carbohydrates in the diet to allow for continual fermentation of carbohydrates by the microorganisms in the rumen. It has been seen in studies and previous literature that the partial replacement of starch with sugars has the potential to maintain the ruminal environment and milk yield and composition in dairy cows without reducing NDF digestibility. The objective of this review is to evaluate the effects of partially replacing starch with sugars in dairy diets and its implication on ruminal fermentation, nutrient utilization, milk production, and feeding replacement strategy.

7.
J Dairy Sci ; 105(7): 5776-5785, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35570047

ABSTRACT

Sorghum forage is an important alternative to high-quality forage in regions where climatic and soil conditions are less desirable for corn production for silage and producing comparable nutritive value is challenging. The objective of this experiment was to assess the effects of season (spring vs. summer), sorghum variety type (forage sorghum vs. sorghum-sudangrass), and trait [brown midrib (BMR) vs. non-BMR] on dry matter (DM) yield, nutrient composition, and predicted intake and milk yield of whole-plant sorghum forage grown in Florida from 2008 to 2019. Whole-plant sorghum forage was harvested at a targeted 32% of DM, and each year, spring (April) and summer (July) trials were established. A total of 300 forage sorghum and 137 sorghum-sudangrass hybrids were tested for a total of 437 hybrids, of which 199 hybrids contained the BMR trait and 238 were non-BMR. An interaction between season and sorghum variety type was observed for DM yield. Dry matter yield was greater for the spring season than the summer season, with sorghum-sudangrass outperforming forage sorghum only during the spring season. In addition, BMR hybrids had a lower DM yield than non-BMR hybrids, regardless of season and variety type. An interaction between season and trait was observed for predicted neutral detergent fiber digestibility after 30 h of incubation in rumen fluid (NDFD30h). Predicted NDFD30h was greater for BMR sorghum in comparison to non-BMR sorghum, but BMR sorghum had slightly greater predicted NDFD30h when grown in the spring than summer, whereas no seasonal differences were found for predicted NDFD30h across non-BMR sorghum. An interaction between season, variety type, and trait was observed for predicted dry matter intake at 45 (DMI45), 55 (DMI55), and 65 (DMI65) kg of milk/d. Predicted DMI45 and DMI55 were greater for spring BMR forage sorghum than for spring and summer non-BMR sorghum-sudangrass and were greater for spring BMR forage sorghum than for summer BMR sorghum-sudangrass. Predicted DMI65 was greater for BMR forage sorghum in comparison to all non-BMR hybrids in the spring. Additionally, spring BMR forage sorghum was greater than summer sorghum-sudangrass regardless of trait. An interaction between season and sorghum variety type was observed for milk yield per megagram of forage. Milk yield per megagram of forage was greatest for spring forage sorghum. Sorghum variety type and trait selection are crucial to minimize differences in forage nutritive value of sorghum forage between seasons and improve the performance of high-producing dairy cows.


Subject(s)
Sorghum , Animals , Cattle , Diet/veterinary , Dietary Fiber , Digestion , Edible Grain , Female , Lactation , Milk , Nutrients , Seasons , Silage/analysis , Zea mays
8.
J Dairy Sci ; 105(3): 2215-2227, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34955246

ABSTRACT

Corn is a feedstuff commonly fed to dairy cows as a source of energy. The objective of this study was to evaluate whether partially replacing dietary corn with molasses or condensed whey permeate, in lactating dairy cow diets in a dual-flow continuous culture system, can maintain nutrient digestibility by ruminal microorganisms. Furthermore, this study evaluated whether treating condensed whey permeate before feeding could aid the fermentation of the condensed whey permeate in the rumen. Eight fermentors were used in a 4 × 4 replicated Latin square with 4 periods of 10 d each. The control diet (CON) was formulated with corn grain, and the other diets were formulated by replacing corn grain with either sugarcane molasses (MOL), condensed whey permeate (CWP), or treated condensed whey permeate (TCWP). Diets were formulated by replacing 4% of the diet dry matter (DM) in the form of starch from corn with sugars from the byproducts. Sugars were defined as water-soluble carbohydrates (WSC) in the rations. The fermentors were fed 52 g of DM twice daily of diets containing 17% crude protein, 28% neutral detergent fiber, and 45% nonfiber carbohydrates. Liquid treatments were pipetted into each fermentor. After 7 d of adaptation, samples were collected for analyses of volatile fatty acids (VFA), lactate, and ammonia, and fermentors' pH were measured at time points after the morning feeding for 3 d. Pooled samples from effluent containers were collected for similar analyses, nutrient flow, and N metabolism. Data were statistically analyzed using Proc MIXED of SAS version 9.4 (SAS Institute Inc.); fixed effects included treatment and time, and random effects included fermentor, period, and square. The interaction of treatment and time was included for the kinetics samples. The TCWP and MOL treatments maintained greater fermentor pH compared with CWP. Total VFA concentration was increased in CWP compared with MOL. The acetate:propionate ratio was increased in TCWP compared with CON, due to tendencies of increased acetate molar proportion and decreased propionate molar proportion in TCWP. Lactate concentration was increased in MOL. Digestibility of WSC was increased in the diets that replaced corn with byproducts. The partial replacement of 4% of DM from corn starch with the sugars in byproducts had minimal effects on ruminal microbial fermentation and increased pH. Treated CWP had similar effects to molasses.


Subject(s)
Rumen , Zea mays , Animals , Cattle , Diet/veterinary , Dietary Fiber/metabolism , Digestion , Female , Fermentation , Lactation , Milk/chemistry , Molasses , Rumen/metabolism , Whey/metabolism , Zea mays/metabolism
9.
J Dairy Sci ; 105(3): 2301-2314, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34955263

ABSTRACT

The objective of this experiment was to evaluate the effects of supplementing a rumen-protected source of Met, N-acetyl-l-methionine (NALM), on lactational performance and nitrogen metabolism in early- to mid-lactation dairy cows. Sixty multiparous Holstein dairy cows in early lactation (27 ± 4.3 d in milk, SD) were assigned to 4 treatments in a randomized complete block design. Cows were blocked by actual milk yield. Treatments were as follows: (1) no NALM (control); (2) 15 g/d of NALM (NALM15); (3) 30 g/d of NALM (NALM30); and (4) 45 g/d of NALM (NALM45). Diets were formulated using a Cornell Net Carbohydrate and Protein System (CNCPS) v.6.5 model software to meet or exceed nutritional requirements of lactating dairy cows producing 42 kg/d of milk and to undersupply metabolizable Met (control) or supply incremental amounts of NALM. The digestible Met (dMet) supply for control, NALM15, NALM30, and NALM45 were 54.7, 59.8, 64.7, and 72.2 g/d, respectively. The supply of dMet was 88, 94, 104, and 115% of dMet requirement for control, NALM15, NALM30, and NALM45, respectively. Milk yield data were collected, dry matter intake (DMI) was measured daily, and milk samples were collected twice per week for 22 wk. Blood, ruminal fluid, urine, and fecal samples were collected during the covariate period and during wk 4, 8, and 16. Data were analyzed using the GLIMMIX procedure of SAS (SAS Institute) using covariates in the model for all variables except body weight. Linear, quadratic, and cubic contrasts were also tested. Treatments did not affect DMI, milk yield, and milk component concentration and yield; however, feed efficiency expressed as milk yield per DMI and 3.5% fat-corrected milk per DMI were quadratically affected, with greater response observed for NALM15 and NALM30 compared with control. Acetate proportion linearly increased, whereas propionate proportion linearly decreased with NALM supplementation. Blood urea nitrogen linearly decreased with NALM supplementation. Total plasma essential AA concentrations were quadratically affected, as greater values were observed for control and NALM45 than other treatments. Plasma Met concentration was quadratically affected as lower levels were observed with NALM15, whereas Met concentrations increased with NALM45 compared with control. Nitrogen utilization efficiency and apparent total-tract nutrient digestibility were not affected by treatment. Supplementation of NALM at 15 or 30 g/head per day resulted in the greatest improvements in feed efficiency without affecting N metabolism of early- to mid-lactation dairy cows.


Subject(s)
Lactation , Rumen , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Supplements , Female , Lactation/physiology , Methionine , Milk/metabolism , Rumen/metabolism
10.
JDS Commun ; 2(4): 191-195, 2021 Jul.
Article in English | MEDLINE | ID: mdl-36338450

ABSTRACT

The objective of this experiment was to analyze the effect of kernel breakage on the fermentation profile, nitrogen fractions, and ruminal in vitro starch digestibility of whole-plant corn silage and ensiled corn grain. Whole corn plants were harvested, and ears were separated from the forage portion and shelled. Corn kernels were either left intact or broken manually using a hammer. The remaining forage portion of the corn plants was chopped. Samples of the intact and broken kernels were stored for 0 or 30 d in quadruplicate vacuum pouches. Remaining intact and broken kernels were each reconstituted with the chopped forage portion of the corn plant to simulate whole-plant corn forage and were also stored for 0 or 30 d. In kernels separated from whole-plant corn silage, kernel form had no effect on zein protein concentrations. However, it was observed that in vitro starch digestibility at 7 h increased with ensiling only in kernels that were broken. When corn kernels were ensiled alone, concentrations of soluble crude protein and ammonia nitrogen increased with ensiling to a greater extent when kernels were broken. Finally, fermentation of ensiled corn grain was enhanced when kernels were broken. Overall, this study gives insight into the importance of kernel breakage to improve starch digestibility in corn silage through means other than a reduction in particle size and opens the door for continued investigation into the proteolytic activity occurring in the silo.

11.
J Dairy Sci ; 104(2): 1794-1810, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33309382

ABSTRACT

Kernel processing and theoretical length of cut (TLOC) of whole-plant corn silage (WPCS) can affect feed intake, digestibility, and performance of dairy cows. The objective of this study was to evaluate for lactating dairy cows the effects of kernel processing and TLOC of WPCS with vitreous endosperm. The treatments were a pull-type forage harvester without kernel processor set for a 6-mm TLOC (PT6) and a self-propelled forage harvester with kernel processor set for a 6-mm TLOC (SP6), 12-mm TLOC (SP12), and 18-mm TLOC (SP18). Processing scores of the WPCS were 32.1% (PT6), 53.9% (SP6), 49.0% (SP12), and 40.1% (SP18). Twenty-four Holstein cows (139 ± 63 d in milk) were blocked and assigned to six 4 × 4 Latin squares with 24-d periods (18 d of adaptation). Diets were formulated to contain 48.5% WPCS, 15.5% citrus pulp, 15.0% dry ground corn, 9.5% soybean meal, 6.8% low rumen degradability soybean meal, 1.8% calcium soap of palm fatty acids (FA), 1.7% mineral and vitamin mix, and 1% urea (dry matter basis). Nutrient composition of the diets (% of dry matter) was 16.5% crude protein, 28.9% neutral detergent fiber, and 25.4% starch. Three orthogonal contrasts were used to compare treatments: effect of kernel processing (PT6 vs. SP6) and effect of TLOC (particle size; SP6 vs. SP12 and SP12 vs. SP18). Cows fed SP6 produced 1.2 kg/d greater milk yield with no changes in dry matter intake, resulting in greater feed efficiency compared with PT6. Cows fed SP6 also produced more milk protein (+36 g/d), lactose (+61 g/d), and total solids (+94 g/d) than cows fed PT6. The mechanism for increased yield of milk and milk components involved greater kernel fragmentation, starch digestibility, and glucose availability for lactose synthesis by the mammary gland. However, cows fed SP6 had lower chewing time and tended to have greater levels of serum amyloid A compared with PT6. Milk yield was similar for SP6 and SP12, but SP12 cows tended to have less serum amyloid A with greater chewing time. Cows fed SP18 had lower total-tract starch digestibility and tended to have lower plasma glucose and produce less milk compared with cows fed SP12. Compared with PT6, feeding SP6 raised linear odd-chain FA concentration in milk. Similarly, a reduction of these same FA occurred for SP12 compared with SP6. Cows fed SP6 had greater proportion of milk C14:1 and C16:1 compared with PT6 and SP12. Lesser trans C18:1 followed by greater C18:0 concentrations were observed for SP12 and PT6 compared with SP6, which is an indication of more complete biohydrogenation in the rumen. Under the conditions of this study, the use of a self-propelled forage harvester with kernel processing set for a 12-mm TLOC is recommended for WPCS from hybrids with vitreous endosperm.


Subject(s)
Cattle/physiology , Endosperm/metabolism , Food Handling/methods , Silage/analysis , Zea mays/metabolism , Animals , Dietary Fiber/metabolism , Eating , Female , Lactation/physiology , Lactose/metabolism , Milk/chemistry , Milk/metabolism , Milk Proteins/metabolism , Particle Size , Rumen/metabolism , Starch/metabolism
13.
J Dairy Sci ; 103(6): 5783-5790, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32307165

ABSTRACT

The purpose of this literature review is to evaluate current research into and understanding of whole-plant sorghum silage production and the effect of feeding whole-plant sorghum silage on lactation performance of dairy cows. Sorghum's drought tolerance, water efficiency, and low cost of production make it an intriguing crop in areas where whole-plant corn silage production may be limited. Currently, urban land encroachment and reduced water availability have increased social and economic pressures on farms to improve crop production efficiency. As these challenges become more prevalent, greater reliance on sorghum can be expected because of its ability to produce high dry matter yields while maintaining nutritive value, even under less-than-ideal growing conditions. Moreover, whole-plant sorghum silage provides both physically effective fiber and energy through fiber and grain fractions. Advancements in sorghum genetics and mechanical processing have the potential to alleviate common challenges associated with whole-plant sorghum silage supplementation, such as increased neutral detergent fiber and decreased neutral detergent fiber digestibility, starch concentration, and starch digestibility. These nutritive challenges must be overcome for whole-plant sorghum silage to be a viable alternative to whole-plant corn silage.


Subject(s)
Cattle/physiology , Diet/veterinary , Silage/analysis , Sorghum , Animal Nutritional Physiological Phenomena , Animals , Female , Lactation
14.
J Dairy Sci ; 103(1): 379-395, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31629529

ABSTRACT

Dairy farmers are often challenged with the need to feed high-moisture corn (HMC) after less than 30 d of fermentation. The objective this study was to assess the effects of microbial inoculation and particle size on fermentation profile, aerobic stability, and ruminal in situ starch degradation of HMC ensiled for a short period. High-moisture corn was harvested, coarsely ground (3,798 ± 40 µm, on average) or finely ground (984 ± 42 µm, on average), then ensiled in quadruplicate vacuum pouches untreated (CON) or with the following treatments: Lactobacillus plantarum CH6072 at 5 × 104 cfu/g and Enterococcus faecium CH212 at 5 × 104 cfu/g of fresh forage (LPEF); or Lactobacillus buchneri LB1819 at 7.5 × 104 cfu/g and Lactococcus lactis O224 at 7.5 × 104 cfu/g (LBLL). Silos were allowed to ferment for 14 or 28 d. Ruminal in situ starch degradation increased when HMC was finely ground. In addition, in situ starch degradation was greater and aerobic stability increased approximately 5-fold with LBLL compared with CON and LPEF. An interaction between microbial inoculation and storage length occurred for lactic acid. At 14 d, concentrations of lactic acid were greatest in LPEF and lowest in LBLL. Lactic acid concentrations increased from 14 to 28 d with CON and LPEF, but decreased with LBLL. At 28 d, concentrations of lactic acid were lower in LBLL compared with CON and LPEF. An interaction between particle size, microbial inoculation, and storage length occurred for acetic acid and ammonia-N. At 14 and 28 d, acetic acid concentrations were greatest in finely ground LBLL followed by coarsely ground LBLL. Ammonia-N concentrations increased across all treatments from 0 to 28 d. At 14 and 28 d, concentrations of ammonia-N were greatest in finely ground LBLL and lowest in coarsely ground CON and coarsely ground LPEF. Results from this study suggest that L. buchneri LB1819 can produce acetic acid in as little as 14 d, and that by 28 d, it has the potential to improve the aerobic stability of HMC. Additionally, results indicate that L. buchneri LB1819 has the potential to improve ruminal degradation of starch by 28 d of storage. Finally, results confirm enhanced fermentation and improved ruminal starch degradation with finely ground HMC by 28 d of storage.


Subject(s)
Enterococcus faecium/physiology , Lactobacillus/physiology , Silage/analysis , Starch/metabolism , Zea mays , Acetic Acid/metabolism , Aerobiosis , Agricultural Inoculants , Animals , Fermentation , Lactobacillus/classification , Particle Size , Silage/microbiology , Starch/chemistry , Zea mays/metabolism , Zea mays/microbiology
15.
J Dairy Sci ; 102(6): 5726-5755, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30928262

ABSTRACT

The forage lignocellulosic complex is one of the greatest limitations to utilization of the nutrients and energy in fiber. Consequently, several technologies have been developed to increase forage fiber utilization by dairy cows. Physical or mechanical processing techniques reduce forage particle size and gut fill and thereby increase intake. Such techniques increase the surface area for microbial colonization and may increase fiber utilization. Genetic technologies such as brown midrib mutants (BMR) with less lignin have been among the most repeatable and practical strategies to increase fiber utilization. Newer BMR corn hybrids are better yielding than the early hybrids and recent brachytic dwarf BMR sorghum hybrids avoid lodging problems of early hybrids. Several alkalis have been effective at increasing fiber digestibility. Among these, ammoniation has the added benefit of increasing the nitrogen concentration of the forage. However, few of these have been widely adopted due to the cost and the caustic nature of the chemicals. Urea treatment is more benign but requires sufficient urease and moisture for efficacy. Ammonia-fiber expansion technology uses high temperature, moisture, and pressure to degrade lignocellulose to a greater extent than ammoniation alone, but it occurs in reactors and is therefore not currently usable on farms. Biological technologies for increasing fiber utilization such as application of exogenous fibrolytic enzymes, live yeasts, and yeast culture have had equivocal effects on forage fiber digestion in individual studies, but recent meta-analyses indicate that their overall effects are positive. Nonhydrolytic expansin-like proteins act in synergy with fibrolytic enzymes to increase fiber digestion beyond that achieved by the enzyme alone due to their ability to expand cellulose microfibrils allowing greater enzyme penetration of the cell wall matrix. White-rot fungi are perhaps the biological agents with the greatest potential for lignocellulose deconstruction, but they require aerobic conditions and several strains degrade easily digestible carbohydrates. Less ruminant nutrition research has been conducted on brown rot fungi that deconstruct lignocellulose by generating highly destructive hydroxyl radicals via the Fenton reaction. More research is needed to increase the repeatability, efficacy, cost effectiveness, and on-farm applicability of technologies for increasing fiber utilization.


Subject(s)
Animal Feed/analysis , Cattle/metabolism , Dietary Fiber/metabolism , Edible Grain/metabolism , Animals , Dietary Fiber/analysis , Digestion , Edible Grain/chemistry , Rumen/metabolism
16.
J Dairy Sci ; 101(10): 9052-9057, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30100508

ABSTRACT

The objectives of this study were to determine (1) the effect of grinding size (1, 2, 4, and 6 mm) to determine effective ruminal disappearance (ERD); (2) the most adequate method to estimate the rapidly degradable fraction (A); (3) a time point to measure the indigestible fraction (C); and (4) the viability of using fewer time points to estimate starch fractional disappearance rate (kd) of mature corn grain. Fraction A was determined by rinsing in a bucket or washing machine, rumen immersion followed by bucket or washing machine, and water immersion for 30 min followed by bucket or washing machine. Ruminal in situ incubations were performed at 48, 72, 96, and 120 h to determine fraction C, and at 0 (washing machine), 3, 6, 12, 18, 24, and 48 h to determine the kinetics of starch disappearance. Models were used with either 2 or 3 pools and kd was determined by the linear slope of the log-transformed bag residues as a proportion of incubated samples over time. The ERD was calculated as A + B [kd/(kd + kp)], where kp is the ruminal fractional passage rate = 16.0% h-1. Data were analyzed using PROC MIXED of SAS (SAS Institute Inc., Cary, NC) with the fixed effects of run (for fraction A analysis only) method (either washing or model), grinding size, and method by grinding size interaction, with cow as a random effect. Correlation between estimates calculated using all time points or combinations of 2 and 3 time points were determined using PROC CORR. Fraction A was reduced as grinding size increased, but was not altered by washing method. Samples ground at 6 mm had greater fraction C than other grinding sizes at 48, 72, or 96 h, but not at 120 h. Model affected the slowly degradable fraction (B) values solely, but the difference was minor (0.5 percentage units). Greater fractions B and C but reduced kd and ERD were observed as grinding size increased. Based on correlation analysis the 2-pool model, incubation times of 0, 3, and 48 h were suitable to evaluate ruminal starch degradation kinetics in mature corn. Ruminal in situ incubation at 120 h highlighted the lack of a fraction C of starch (0.13% of starch). Washing method did not affect determination of fraction A of starch. Ruminal in situ incubations of 0, 3, and 48 h for starch degradation kinetics using a 2-pool model were adequate for mature ground corn, but 120 h of incubation is suggested to confirm the existence or absence of a fraction C. Grinding size affected starch degradation kinetics and fraction A determination.


Subject(s)
Cattle , Digestion , Food Handling/methods , Rumen/metabolism , Starch/metabolism , Animal Feed , Animals , Female , Particle Size , Zea mays
17.
J Dairy Sci ; 101(5): 3937-3951, 2018 May.
Article in English | MEDLINE | ID: mdl-29685271

ABSTRACT

Over the last 25 years, whole-plant corn silage has become an important and popular feedstuff for dairy production. Copious research has been dedicated to the development and evaluation of alternatives to enhance the nutritive value of whole-plant corn silage. These efforts have been aimed at manipulating the physical and chemical characteristics of whole-plant corn silage in an effort to maximize dairy profitability. Results from this review indicate that optimization of harvest maturity, kernel processing, theoretical length of cut, and cutting height improve or maintain the nutritive value and milk production of lactating dairy cows. Technological advancements have been developed and made available to dairy producers and corn growers desiring to enhance fiber and starch digestibility of whole-plant corn silage. Future research should be directed toward further assessment of new processors available in the market and the development of assessment methods for optimization of crop processor settings, harvest efficiency, and nutritional modeling.


Subject(s)
Animal Feed/analysis , Cattle/metabolism , Food Handling/methods , Silage/analysis , Zea mays/chemistry , Animals , Digestion , Nutritive Value , Zea mays/metabolism
18.
J Dairy Sci ; 101(5): 4111-4121, 2018 May.
Article in English | MEDLINE | ID: mdl-29685280

ABSTRACT

Feeding environment and feed accessibility influence the dairy cow's response to the ration and forage composition. Fiber content, physical form, and fermentability influence feeding behavior, feed intake, and overall cow metabolic and lactational responses to forage. It is possible to vary eating time of lactating dairy cattle by over 1 h/d by changing dietary silage fiber content, digestibility, and particle size. Optimizing silage particle size is important because excessively long particles increase the necessary chewing to swallow a bolus of feed, thereby increasing eating time. Under competitive feeding situations, excessively coarse or lower fiber digestibility silages may limit DMI of lactating dairy cows due to eating time requirements that exceed available time at the feed bunk. Additionally, greater silage particle size, especially the particles retained on the 19-mm sieve using the Penn State Particle Separator, are most likely to be sorted. Silage starch content and fermentability may influence ruminal propionate production and thereby exert substantial control over meal patterns and feed consumption. Compared with silage fiber characteristics, relatively little research has assessed how silage starch content and fermentability interact with the feeding environment to influence dairy cow feeding behavior. Finally, voluminous literature exists on the potential effects that silage fermentation end products have on feeding behavior and feed intake. However, the specific mechanisms of how these end products influence behavior and intake are poorly understood in some cases. The compounds shown to have the greatest effect on feeding behavior are lactate, acetate, propionate, butyrate, ammonia-N, and amines. Any limitation in the feeding environment will likely accentuate the negative response to poor silage fermentation. In the future, to optimize feeding behavior and dry matter intake of silage-based diets fed to dairy cattle, we will need to consider the chemical and physical properties of silage, end products of silage fermentation, and the social and physical components of the feeding environment.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Silage/analysis , Animals , Dietary Fiber/metabolism , Digestion , Feeding Behavior , Rumen/metabolism
19.
J Dairy Sci ; 101(5): 4643-4649, 2018 May.
Article in English | MEDLINE | ID: mdl-29519723

ABSTRACT

The objective of this study was to evaluate the effect of rehydrating and ensiling dry ground corn (DGC) with varying concentrations of wet brewers grain (WBG) on fermentation profile and ruminal in vitro starch digestibility (ivSD; 7-h incubations on dried and 4-mm ground samples). Samples of DGC and WBG were weighed separately and mixed into 100% WBG (WBG); mixture of DGC and WBG targeting 60 (RC60), 65 (RC65), or 70% (RC70) of dry matter (DM); and DGC rehydrated with distilled water targeting for 70% of DM (REH). Samples were ensiled in vacuum-sealed bags and allowed to ferment for 0, 1, 3, 7, 14, and 28 d. The experiment consisted of 30 treatments (5 mixtures of DGC and WGB × 6 ensiling time points) and 120 mini-silos (4 silos per treatment). All samples were analyzed for fermentation profile and water-soluble carbohydrates. Except for WBG, samples from 0 and 28 d were analyzed for ivSD. Content of DM was greater for REH (70.0%), followed by RC70 (69.2%), RC65 (63.9%), RC60 (58.4%), and WBG (17.5%) on d 0, with a slight decrease (1 to 2 percentage units) observed for all treatments until 28 d. Measurements of pH were highest for REH (6.19) and lowest for WBG (4.68) on 0 d, but all other treatments were lower than WBG on 14 and 28 d (3.83 vs. 4.14, on average). Except for WBG, all treatments had a gradual increase in lactic acid concentration from 0 to 28 d. In contrast, butyric acid gradually increased from 0 (0.25%) to 28 d (2.16% of DM) in WBG but not the other treatments. Fermentation patterns were related to water-soluble carbohydrates concentration, which was greater for all treatments except WBG from 0 (1.41% on average vs. 0.38% of DM, respectively) to 28 d (0.37% on average vs. 0.19% of DM, respectively). Except for RC60, greater ivSD was observed for all treatments on 28 than 0 d, but magnitude of the difference was greater for REH and RC70 (14.5 percentage units on average). Rehydration and ensiling of DGC with WBG resulted in adequate fermentation and enhanced starch digestibility.


Subject(s)
Animal Feed/analysis , Food Handling/methods , Rumen/metabolism , Starch/metabolism , Zea mays/metabolism , Animals , Cattle , Digestion , Edible Grain/chemistry , Edible Grain/metabolism , Endopeptidases/metabolism , Fermentation , Food Handling/instrumentation , Silage/analysis , Starch/chemistry , Zea mays/chemistry
20.
J Dairy Sci ; 101(4): 3008-3020, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29428756

ABSTRACT

The study was conducted to examine the effect of supplementing bentonite clay with or without a Saccharomyces cerevisiae fermentation product (SCFP; 19 g of NutriTek + 16 g of MetaShield, both from Diamond V, Cedar Rapids, IA) on the performance and health of dairy cows challenged with aflatoxin B1 (AFB1). Twenty-four lactating Holstein cows (64 ± 11 d in milk) were stratified by parity and milk production and randomly assigned to 1 of 4 treatment sequences. The experiment had a balanced 4 × 4 Latin square design with 6 replicate squares, four 33-d periods, and a 5-d washout interval between periods. Cows were fed a total mixed ration containing 36.1% corn silage, 8.3% alfalfa hay, and 55.6% concentrate (dry matter basis). Treatments were (1) control (no additives), (2) toxin (T; 1,725 µg of AFB1/head per day), (3) T + clay (CL; 200 g/head per day; top-dressed), and (4) CL+SCFP (CL+SCFP; 35 g/head per day; top-dressed). Cows were adapted to diets from d 1 to 25 (predosing period) and then orally dosed with AFB1 from d 26 to 30 (dosing period), and AFB1 was withdrawn from d 31 to 33 (withdrawal period). Milk samples were collected twice daily from d 21 to 33, and plasma was sampled on d 25 and 30 before the morning feeding. Transfer of ingested AFB1 into milk aflatoxin M1 (AFM1) was greater in T than in CL or CL+SCFP (1.65 vs. 1.01 and 0.94%, respectively) from d 26 to 30. The CL and CL+SCFP treatments reduced milk AFM1 concentration compared with T (0.45 and 0.40 vs. 0.75 µg/kg, respectively), and, unlike T, both CL and CL+SCFP lowered AFM1 concentrations below the US Food and Drug Administration action level (0.5 µg/kg). Milk yield tended to be greater during the dosing period in cows fed CL+SCFP compared with T (39.7 vs. 37.7 kg/d). Compared with that for T, plasma glutamic oxaloacetic transaminase concentration, indicative of aflatoxicosis and liver damage, was reduced by CL (85.9 vs. 95.2 U/L) and numerically reduced by CL+SCFP (87.9 vs. 95.2 U/L). Dietary CL and CL+SCFP reduced transfer of dietary AFB1 to milk and milk AFM1 concentration. Only CL prevented the increase in glutamic oxaloacetic transaminase concentration, and only CL+SCFP prevented the decrease in milk yield caused by AFB1 ingestion.


Subject(s)
Aflatoxin B1/pharmacology , Aluminum Silicates/metabolism , Bentonite/metabolism , Cattle/metabolism , Milk/chemistry , Saccharomyces cerevisiae/chemistry , Aluminum Silicates/administration & dosage , Animal Feed/analysis , Animals , Bentonite/administration & dosage , Cattle/immunology , Clay , Diet/veterinary , Dietary Supplements/analysis , Female , Fermentation , Health Status , Lactation , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...