Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 85(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30389772

ABSTRACT

When Escherichia coli K-12 is inoculated into rich medium in batch culture, cells experience five phases. While the lag and logarithmic phases are mechanistically fairly well defined, the stationary phase, death phase, and long-term stationary phase are less well understood. Here, we characterize a mechanism of delaying death, a phenomenon we call the "alcohol effect," where the addition of small amounts of certain alcohols prolongs stationary phase for at least 10 days longer than in untreated conditions. We show that the stationary phase is extended when ethanol is added above a minimum threshold concentration. Once ethanol levels fall below a threshold concentration, cells enter the death phase. We also show that the effect is conferred by the addition of straight-chain alcohols 1-propanol, 1-butanol, 1-pentanol, and, to a lesser degree, 1-hexanol. However, methanol, isopropanol, 1-heptanol, and 1-octanol do not delay entry into death phase. Though modulated by RpoS, the alcohol effect does not require RpoS activity or the activities of the AdhE or AdhP alcohol dehydrogenases. Further, we show that ethanol is capable of extending the life span of stationary-phase cultures for non-K-12 E. coli strains and that this effect is caused in part by genes of the glycolate degradation pathway. These data suggest a model where ethanol and other shorter 1-alcohols can serve as signaling molecules, perhaps by modulating patterns of gene expression that normally regulate the transition from stationary phase to death phase.IMPORTANCE In one of the most well-studied organisms in the life sciences, Escherichia coli, we still do not fully understand what causes populations to die. This is largely due to the technological difficulties of studying bacterial cell death. This study provides an avenue to studying how and why E. coli populations, and perhaps other microbes, transition from stationary phase to death phase by exploring how ethanol and other alcohols delay the onset of death. Here, we demonstrate that alcohols are acting as signaling molecules to achieve the delay in death phase. This study not only offers a better understanding of a fundamental process but perhaps also provides a gateway to studying the dynamics between ethanol and microbes in the human gastrointestinal tract.


Subject(s)
Alcohols/pharmacology , Escherichia coli K12/drug effects , Escherichia coli Proteins/metabolism , Transcriptome , Adaptation, Physiological , Escherichia coli K12/genetics , Escherichia coli K12/physiology , Escherichia coli Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL