ABSTRACT
Pneumococcal surface protein A (PspA) is an important virulence factor in Streptococcus pneumoniae that binds to lactoferrin and protects the bacterium from the bactericidal action of lactoferricins-cationic peptides released upon lactoferrin proteolysis. The present study investigated if PspA can prevent killing by another cationic peptide, indolicidin. PspA-negative pneumococci were more sensitive to indolicidin-induced killing than bacteria expressing PspA, suggesting that PspA prevents the bactericidal action of indolicidin. Similarly, chemical removal of choline-binding proteins increased sensitivity to indolicidin. The absence of capsule and PspA had an additive effect on pneumococcal killing by the AMP. Furthermore, anti-PspA antibodies enhanced the bactericidal effect of indolicidin on pneumococci, while addition of soluble PspA fragments competitively inhibited indolicidin action. Previous in silico analysis suggests a possible interaction between PspA and indolicidin. Thus, we hypothesize that PspA acts by sequestering indolicidin and preventing it from reaching the bacterial membrane. A specific interaction between PspA and indolicidin was demonstrated by mass spectrometry, confirming that PspA can actively bind to the AMP. These results reinforce the vaccine potential of PspA and suggest a possible mechanism of innate immune evasion employed by pneumococci, which involves binding to cationic peptides and hindering their ability to damage the bacterial membranes.
Subject(s)
Bacterial Proteins , Streptococcus pneumoniae , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/metabolism , Bacterial Proteins/metabolism , Lactoferrin/pharmacology , Lactoferrin/metabolism , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/metabolism , Protein BindingABSTRACT
Pneumococcal surface protein A (PspA) is an important virulence factor in Streptococcus pneumoniae that binds to lactoferrin and protects the bacterium from the bactericidal action of lactoferricins—cationic peptides released upon lactoferrin proteolysis. The present study investigated if PspA can prevent killing by another cationic peptide, indolicidin. PspA-negative pneumococci were more sensitive to indolicidin-induced killing than bacteria expressing PspA, suggesting that PspA prevents the bactericidal action of indolicidin. Similarly, chemical removal of choline-binding proteins increased sensitivity to indolicidin. The absence of capsule and PspA had an additive effect on pneumococcal killing by the AMP. Furthermore, anti-PspA antibodies enhanced the bactericidal effect of indolicidin on pneumococci, while addition of soluble PspA fragments competitively inhibited indolicidin action. Previous in silico analysis suggests a possible interaction between PspA and indolicidin. Thus, we hypothesize that PspA acts by sequestering indolicidin and preventing it from reaching the bacterial membrane. A specific interaction between PspA and indolicidin was demonstrated by mass spectrometry, confirming that PspA can actively bind to the AMP. These results reinforce the vaccine potential of PspA and suggest a possible mechanism of innate immune evasion employed by pneumococci, which involves binding to cationic peptides and hindering their ability to damage the bacterial membranes.
ABSTRACT
PspA and pneumolysin are two important vaccine candidates, able to elicit protection in different models of pneumococcal infection. The high immunogenic potential of PspA, combined with a possible adjuvant effect of pneumolysin derivatives (due to their ability to interact with TLR-4) could greatly improve the immunogenicity and coverage of a protein-based pneumococcal vaccine. A chimeric protein including the N-terminal region of PspA in fusion with the pneumolysin derivative, PlD1, has been shown to induce high antibody levels against each protein, and protect mice against invasive challenge. The aim of the present study was to investigate the cellular response induced by such vaccine, and to evaluate protection in a murine model of lobar pneumococcal pneumonia. Pneumococcal pneumonia was induced in BALB/c mice by nasal instillation of a high dose of a serotype 14 strain with low virulence. Airway inflammation was confirmed by total and differential cell counts in BAL and by histological analysis of the lungs, and bacterial loads were measured 7 days after challenge. Cytokine levels were determined in the bronchoalveolar fluid (BALF) of mice immunized with rPspA-PlD1 fusion after challenge, by flow cytometry and ELISA. After challenge, the mice developed lung inflammation with no invasion of other sites, as demonstrated by histological analysis. We detected significant production of TNF-α and IL-6 in the BALF, which correlated with protection against pneumonia in the group immunized with rPspA-PlD1. In conclusion, we found that the rPspA-PlD1fusion is protective against pneumococcal pneumonia in mice, and protection is correlated with an early and controlled local inflammatory response. These results are in agreement with previous data demonstrating the efficacy of the fusion protein against pneumococcal sepsis and reinforce the potential of the rPspA-PlD1 protein chimera as a promising vaccine strategy to prevent pneumococcal disease.
Subject(s)
Pneumonia, Pneumococcal , Vaccines , Mice , Animals , Pneumonia, Pneumococcal/prevention & control , Disease Models, Animal , Instillation, DrugABSTRACT
Childhood respiratory diseases, such as asthma, are important public health problems worldwide and could be associated with tooth enamel defects. This study aimed to verify the relationship between asthma and enamel defects in teeth, to answer the following question: "Could asthma in children be significantly associated with enamel defects in deciduous dentition and young permanent teeth?." PUBMED-MEDLINE, EMBASE, LILACS, and COCHRANE databases were systematically searched and assessed articles (2000-2021) were cautiously scored according to a predetermined criterion. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses were considered. Twenty-two articles were critically appraised and used as a basis for conclusions. The relationship between asthma and enamel defects was confirmed in the majority of appraised papers, one with a high level of evidence, nine with a moderate level, and four with a low level. Out of the eight manuscripts investigating the influence of asthma medication on enamel defects, only three (one with high, one moderate, and another with a low level of evidence) suggested an association. It can be concluded that asthma is closely connected with enamel defects in young permanent teeth. However, as most of the papers appraised were of cross-sectional or case-control design, further well-designed clinical investigations with a prospective design are welcome to reinforce our findings.
Subject(s)
Asthma , Asthma/epidemiology , Case-Control Studies , Child , Cross-Sectional Studies , Dental Enamel , Humans , Prospective StudiesABSTRACT
PspA and pneumolysin are two important vaccine candidates, able to elicit protection in different models of pneumococcal infection. The high immunogenic potential of PspA, combined with a possible adjuvant effect of pneumolysin derivatives (due to their ability to interact with TLR-4) could greatly improve the immunogenicity and coverage of a proteinbased pneumococcal vaccine. A chimeric protein including the N-terminal region of PspA in fusion with the pneumolysin derivative, PlD1, has been shown to induce high antibody levels against each protein, and protect mice against invasive challenge. The aim of the present study was to investigate the cellular response induced by such vaccine, and to evaluate protection in a murine model of lobar pneumococcal pneumonia. Pneumococcal pneumonia was induced in BALB/c mice by nasal instillation of a high dose of a serotype 14 strain with low virulence. Airway inflammation was confirmed by total and differential cell counts in BAL and by histological analysis of the lungs, and bacterial loads were measured 7 days after challenge. Cytokine levels were determined in the bronchoalveolar fluid (BALF) of mice immunized with rPspA-PlD1 fusion after challenge, by flow cytometry and ELISA. After challenge, the mice developed lung inflammation with no invasion of other sites, as demonstrated by histological analysis. We detected significant production of TNF-α and IL-6 in the BALF, which correlated with protection against pneumonia in the group immunized with rPspA-PlD1. In conclusion, we found that the rPspA-PlD1fusion is protective against pneumococcal pneumonia in mice, and protection is correlated with an early and controlled local inflammatory response. These results are in agreement with previous data demonstrating the efficacy of the fusion protein against pneumococcal sepsis and reinforce the potential of the rPspA-PlD1 protein chimera as a promising vaccine strategy to prevent pneumococcal disease.
ABSTRACT
The implementation of polysaccharide-based vaccines has massively reduced the incidence of invasive pneumococcal diseases. However, there is great concern regarding serotype replacement and the increase in antibiotic resistant strains expressing non-vaccine capsular types. In addition, conjugate vaccines have high production costs, a limiting factor for their implementation in mass immunization programs in developing countries. These limitations have prompted the development of novel vaccine strategies for prevention of Streptococcus pneumoniae infections. The use of conserved pneumococcal antigens such as recombinant proteins or protein fragments presents an interesting serotype-independent alternative. Pht is a family of surface-exposed proteins which have been evaluated as potential vaccine candidates with encouraging results. The present work investigated the immune responses elicited by subcutaneous immunization of mice with the polyhistidine triad protein D (PhtD) and its amino and carboxyl terminal fragments. The proteins were immunogenic and protective against pneumococcal sepsis in mice. Antibodies raised against PhtD increased complement C3b deposition on the pneumococcal surface, mainly mediated by the alternative pathway. Sera from mice immunized with PhtD and PhtD_Cter promoted an increase in bacterial uptake by mouse phagocytes. The interaction of PhtD with the complement system regulator factor H was investigated in silico and in vitro by ELISA and western blot, confirming PhtD as a factor-H binding protein. Our results support the inclusion of PhtD and more specifically, its C-terminal fragment in a multicomponent serotype independent vaccine and suggests a role for the complement system in PhtD-mediated protection.
Subject(s)
Bacteremia , Pneumococcal Infections , Animals , Antibodies, Bacterial , Bacterial Proteins , Mice , Pneumococcal Infections/prevention & control , Pneumococcal VaccinesABSTRACT
Despite the undeniable success of polysaccharide vaccines against Streptococcus pneumoniae infections, there is a consensus on the scientific field that this approach should be revised in order to overpass the problems related with these formulations, such as serotype replacement and high production costs. The study of conserved pneumococcal proteins or its truncated fragments has emerged as a serotype independent alternative. In this work, we have characterized the immune response elicited by systemic immunization of mice with the Histidine triad protein D (PhtD) and its' amino and carboxyl terminal fragments. The proteins were shown to be immunogenic and protective against pneumococcal colonization, with increased IL-17 production, and induction of antibodies able to limit pneumococcal adhesion to human respiratory cells. Antiserum against PhtD_Nter, but not C_ter or PhtD, promoted an increase in bacterial phagocytosis in vitro. Interestingly, antibodies against the PhtD_Nter displayed cross-reactivity with two other pneumococcal proteins, PspA and PspC, due to sequence similarities in the proline rich region of the molecules. On a whole, our results support the inclusion of PhtD, and more specifically, its N-terminal fragment, in a multicomponent serotype independent vaccine.
Subject(s)
Pneumococcal Infections , Pneumococcal Vaccines , Streptococcus pneumoniae , Animals , Antibodies, Bacterial , Bacterial Proteins/genetics , Immunization , Mice , Pneumococcal Infections/prevention & control , Streptococcus pneumoniae/immunologyABSTRACT
Despite the undeniable success of polysaccharide vaccines against Streptococcus pneumoniae infections, there is a consensus on the scientific field that this approach should be revised in order to overpass the problems related with these formulations, such as serotype replacement and high production costs. The study of conserved pneumococcal proteins or its truncated fragments has emerged as a serotype independent alternative. In this work, we have characterized the immune response elicited by systemic immunization of mice with the Histidine triad protein D (PhtD) and its’ amino and carboxyl terminal fragments. The proteins were shown to be immunogenic and protective against pneumococcal colonization, with increased IL-17 production, and induction of antibodies able to limit pneumococcal adhesion to human respiratory cells. Antiserum against PhtD_Nter, but not C_ter or PhtD, promoted an increase in bacterial phagocytosis in vitro. Interestingly, antibodies against the PhtD_Nter displayed cross-reactivity with two other pneumococcal proteins, PspA and PspC, due to sequence similarities in the proline rich region of the molecules. On a whole, our results support the inclusion of PhtD, and more specifically, its N-terminal fragment, in a multicomponent serotype independent vaccine
ABSTRACT
The complement system plays a central role in immune defense against Streptococcus pneumoniae. In order to evade complement attack, pneumococci have evolved a number of mechanisms that limit complement mediated opsonization and subsequent phagocytosis. This review focuses on the strategies employed by pneumococci to circumvent complement mediated immunity, both in vitro and in vivo. At last, since many of the proteins involved in interactions with complement components are vaccine candidates in different stages of validation, we explore the use of these antigens alone or in combination, as potential vaccine approaches that aim at elimination or drastic reduction in the ability of this bacterium to evade complement.
ABSTRACT
Here, we describe the genomic features of the Actinobacteria Kocuria sp. SM24M-10 isolated from mucus of the Brazilian endemic coral Mussismilia hispida. The sequences are available under accession number LDNX01000000 (http://www.ncbi.nlm.nih.gov/nuccore/LDNX00000000). The genomic analysis revealed interesting information about the adaptation of bacteria to the marine environment (such as genes involved in osmotic and oxidative stress) and to the nutrient-rich environment provided by the coral mucus.
ABSTRACT
An actinobacterial strain, designated SO9-6, was isolated from a copper iron sulfide mineral. The organism is Gram-positive, facultatively anaerobic, and coccoid. Chemotaxonomic and phylogenetic properties were consistent with its classification in the genus Kocuria. Here, we report the first draft genome sequence of Kocuria marina SO9-6 under accession JROM00000000 (http://www.ncbi.nlm.nih.gov/nuccore/725823918), which provides insights for heavy metal bioremediation and production of compounds of biotechnological interest.
ABSTRACT
During bioleaching, Acidithiobacillus ferrooxidans is subjected to different types of stress, including heat stress, which affect bacterial growth. In this work, real time quantitative PCR was used to analyze the expression of heat shock genes, as well as genes that encode proteins related to several functional categories in A. ferrooxidans. Cells were submitted to long-term growth and heat shock, both at 40°C. The results showed that heat shock affected the expression levels of most genes investigated, whilst long-term growth at 40°C resulted in minor changes in gene expression, except for certain genes related to iron transport, which were strongly down-regulated, suggesting that the iron processing capability of A. ferrooxidans was affected by long-term growth at 40°C. A bioinformatic analysis of the genes' promoter regions indicated a putative transcriptional regulation by the σ(32) factor in 12 of the 31 genes investigated, suggesting the involvement of other regulatory mechanisms in the response of A. ferrooxidans to heat stress.
Subject(s)
Acidithiobacillus/genetics , Bacterial Proteins/biosynthesis , Gene Expression Regulation, Bacterial , Hot Temperature , Acidithiobacillus/growth & development , Bacterial Proteins/genetics , Binding Sites , Carrier Proteins/biosynthesis , Carrier Proteins/genetics , Coenzymes/genetics , Consensus Sequence , Energy Metabolism/genetics , Genes, Bacterial , Heat-Shock Proteins/biosynthesis , Heat-Shock Proteins/genetics , Heat-Shock Proteins/physiology , Iron/metabolism , Promoter Regions, Genetic/genetics , RNA, Bacterial/genetics , Real-Time Polymerase Chain Reaction , Sigma Factor/physiologyABSTRACT
BACKGROUND: Acidithiobacillus ferrooxidans is an acidophilic, chemolithoautotrophic bacterium that has been successfully used in metal bioleaching. In this study, an analysis of the A. ferrooxidans ATCC 23270 genome revealed the presence of three sHSP genes, Afe_1009, Afe_1437 and Afe_2172, that encode proteins from the HSP20 family, a class of intracellular multimers that is especially important in extremophile microorganisms. RESULTS: The expression of the sHSP genes was investigated in A. ferrooxidans cells submitted to a heat shock at 40°C for 15, 30 and 60 minutes. After 60 minutes, the gene on locus Afe_1437 was about 20-fold more highly expressed than the gene on locus Afe_2172. Bioinformatic and phylogenetic analyses showed that the sHSPs from A. ferrooxidans are possible non-paralogous proteins, and are regulated by the σ32 factor, a common transcription factor of heat shock proteins. Structural studies using homology molecular modeling indicated that the proteins encoded by Afe_1009 and Afe_1437 have a conserved α-crystallin domain and share similar structural features with the sHSP from Methanococcus jannaschii, suggesting that their biological assembly involves 24 molecules and resembles a hollow spherical shell. CONCLUSION: We conclude that the sHSPs encoded by the Afe_1437 and Afe_1009 genes are more likely to act as molecular chaperones in the A. ferrooxidans heat shock response. In addition, the three sHSPs from A. ferrooxidans are not recent paralogs, and the Afe_1437 and Afe_1009 genes could be inherited horizontally by A. ferrooxidans.
Subject(s)
Acidithiobacillus/genetics , Bacterial Proteins/metabolism , Heat-Shock Proteins, Small/metabolism , Phylogeny , Acidithiobacillus/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Base Sequence , Computational Biology , Gene Expression Regulation, Bacterial , Heat-Shock Proteins, Small/genetics , Hot Temperature , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Analysis, ProteinABSTRACT
The aim of the present study was to evaluate the effects of yerba maté extract upon markers of insulin resistance and inflammatory markers in mice with high fat diet-induced obesity. The mice were introduced to either standard or high fat diets. After 12 weeks on a high fat diet, mice were randomly assigned to one of the two treatment conditions, water or yerba maté extract at 1.0 gkg(-1). After treatment, glucose blood level and hepatic and soleus muscle insulin response were evaluated. Serum levels of TNF-α and IL-6 were evaluated by ELISA, liver tissue was examined to determine the mRNA levels of TNF-α, IL-6 and iNOS, and the nuclear translocation of NF-κB was determined by an electrophoretic mobility shift assay. Our data show improvements in both the basal glucose blood levels and in the response to insulin administration in the treated animals. The molecular analysis of insulin signalling revealed a restoration of hepatic and muscle insulin substrate receptor (IRS)-1 and AKT phosphorylation. Our data show that the high fat diet caused an up-regulation of the TNF-α, IL-6, and iNOS genes. Although after intervention with yerba maté extract the expression levels of those genes returned to baseline through the NF-κB pathway, these results could also be secondary to the weight loss observed. In conclusion, our results indicate that yerba maté has a potential anti-inflammatory effect. Additionally, these data demonstrate that yerba maté inhibits hepatic and muscle TNF-α and restores hepatic insulin signalling in mice with high fat diet-induced obesity.
Subject(s)
Anti-Inflammatory Agents/administration & dosage , Ilex paraguariensis , Insulin Resistance , Obesity/drug therapy , Plant Extracts/administration & dosage , Adipose Tissue/drug effects , Animals , Biomarkers/metabolism , Blood Glucose/metabolism , Body Weight/drug effects , Dietary Fats/administration & dosage , Gene Expression Regulation , Inflammation Mediators/metabolism , Insulin/metabolism , Insulin Receptor Substrate Proteins/metabolism , Liver/metabolism , Male , Mice , Mice, Obese , Muscle, Skeletal/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Obesity/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Thermogenesis/drug effects , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Acidithiobacillus ferrooxidans is one of the most widely used microorganisms in bioleaching operations to recover copper from low-grade copper sulfide ores. This work aimed to investigate the relative expression of genes related to the iron uptake system when A. ferrooxidans LR was maintained in contact with chalcopyrite or bornite as the sole energy source. Real-time quantitative PCR analysis revealed that the presence of bornite had no effect on the expression of seven genes related to the siderophore-mediated Fe(III) uptake system, while in the presence of chalcopyrite the expression of the genes was up-regulated. Bioinformatic analysis of the genomic region where these genes were found revealed the existence of three new putative DNA-binding sequences for the ferric iron uptake transcriptional regulator (Fur). Electrophoretic mobility shift assays demonstrated that a purified A. ferrooxidans His-tagged Fur protein was able to bind in vitro to each of these putative Fur boxes, suggesting that Fur regulated the expression of these genes. The expression of fur and two known Fur-regulated genes, mntH and dsrK, was also investigated in the presence of chalcopyrite. While the expression of fur and mntH was up-regulated, the expression of dsrK was down-regulated. The low amount of ferrous iron in the medium was probably responsible for the up-regulation of fur and the genes related to the siderophore-mediated Fe(III) uptake system when A. ferrooxidans LR was kept in the presence of chalcopyrite. A homology model of the A. ferrooxidans Fur was constructed and revealed that the putative DNA-binding surface presents conserved positively charged residues, supporting a previously suggested mode of interaction with DNA. The up-regulation of fur and the siderophore-mediated Fe(III) uptake genes, and the down-regulation of dsrK suggest that in the presence of chalcopyrite Fur acts as a transcription inducer and repressor.
Subject(s)
Acidithiobacillus/drug effects , Acidithiobacillus/metabolism , Copper/pharmacology , Iron/metabolism , Sulfides/pharmacology , Bacterial Proteins/genetics , Computational Biology , Electrophoretic Mobility Shift Assay , Gene Expression Regulation, Bacterial/drug effects , Polymerase Chain ReactionABSTRACT
Acidithiobacillus ferrooxidans is a mesophilic, acidophilic, chemolithoautotrophic bacterium that obtains energy from the oxidation of ferrous iron (Fe2+), elemental sulfur and reduced sulfur compounds. The industrial interest in A. ferrooxidans resides in its capacity to oxidize insoluble metal sulfides into soluble metal sulfates, thus allowing the recovery of the desired metals from low-grade sulfide ores. In the present work, RNA arbitrarily primed PCR (RAP-PCR) was performed to identify cDNAs differentially expressed in A. ferrooxidans cells grown in the presence of Fe2+ and cells maintained for 24 h in the presence of the copper sulfides bornite and chalcopyrite. Eighteen cDNAs corresponding to genes with known function were identified, and their relative expression was further characterized by real-time quantitative PCR. Bornite had a mild effect on the expression of the 18 genes analyzed. None of these genes was down-regulated and among the few genes up-regulated, it is worth mentioning lepA and def-2 that are involved in protein synthesis. Chalcopyrite presented the most significant changes. Five genes related to protein processing were down-regulated, and another 5 genes related to the transport system were up-regulated. The up- and down-regulation of these genes in the presence of bornite and chalcopyrite could be due to alterations in the ideal pH, presence of copper ions in solution and nutrient limitation. The results suggest that gene expression modulation might be important for the A. ferrooxidans early response to copper sulfides.
Subject(s)
Acidithiobacillus/metabolism , Copper/pharmacology , Ferrous Compounds/pharmacology , Gene Expression Regulation, Bacterial , Sulfides/pharmacology , Acidithiobacillus/drug effects , Acidithiobacillus/genetics , Down-Regulation , Gene Expression , Gene Expression Profiling , Iron/metabolism , Metals/metabolism , Oxidation-Reduction , Polymerase Chain Reaction , Sulfides/metabolism , Sulfur/metabolism , Sulfur Compounds/metabolismABSTRACT
Acidithiobacillus ferrooxidans is a Gram-negative, chemolithoautotrophic bacterium involved in metal bioleaching. Using the RNA arbitrarily primed polymerase chain reaction (RAP-PCR), we have identified several cDNAs that were differentially expressed when A. ferrooxidans LR was submitted to potassium- and phosphate-limiting conditions. One of these cDNAs showed similarity with ribB. An analysis of the A. ferrooxidans ATCC 23270 genome, made available by The Institute for Genomic Research, showed that the ribB gene was not located in the rib operon, but a ribBA gene was present in this operon instead. The ribBA gene was isolated from A. ferrooxidans LR and expression of both ribB and ribBA was investigated. Transcript levels of both genes were enhanced in cells grown in the absence of K2HPO4, in the presence of zinc and copper sulfate and in different pHs. Transcript levels decreased upon exposure to a temperature higher than the ideal 30 degrees C and at pH 1.2. A comparative genomic analysis using the A. ferrooxidans ATCC 23270 genome revealed similar putative regulatory elements for both genes. Moreover, an RFN element was identified upstream from the ribB gene. Phylogenetic analysis of the distribution of RibB and RibBA in bacteria showed six different combinations. We suggest that the presence of duplicated riboflavin synthesis genes in bacteria must provide their host with some benefit in certain stressful situations.
Subject(s)
Acidithiobacillus/enzymology , Acidithiobacillus/growth & development , Bacterial Proteins/genetics , GTP Cyclohydrolase/genetics , Gene Expression Regulation, Bacterial , Intramolecular Transferases/genetics , Phylogeny , Acidithiobacillus/classification , Acidithiobacillus/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Base Sequence , GTP Cyclohydrolase/chemistry , GTP Cyclohydrolase/metabolism , Genome, Bacterial , Intramolecular Transferases/chemistry , Intramolecular Transferases/metabolism , Molecular Sequence Data , Nucleic Acid Conformation , OperonABSTRACT
Because the molecular mechanism of amoxicillin resistance in Helicobacter pylori seems to be partially explained by several mutational changes in the pbp1A gene, the aim of the present study was to evaluate the gene expression pattern in response to amoxicillin in the Amx(R) Hardenberg strain using RNA arbitrarily primed PCR (RAP-PCR). In the experiments, c. 100 differentially expressed RAP-PCR products were identified using five arbitrary primers. The cDNAs that presented the highest levels of induction or repression were cloned and sequenced, and the sequences were compared with those present in databases using the blast search algorithm. The differential expression of the isolated cDNAs was confirmed by real-time PCR. The preliminary results showed that amoxicillin alters the expression of five cDNAs involved in biosynthesis, two involved with pathogenesis, four related to cell envelope formation, two involved in cellular processes, three related with transport and binding proteins, one involved with protein degradation, one involved with energy metabolism and seven hypothetical proteins. Further analysis of these cDNAs will allow a better comprehension of both the molecular mechanism(s) of amoxicillin resistance and the adaptative mechanism(s) used by H. pylori in the presence of this antibiotic.
Subject(s)
Amoxicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Helicobacter pylori/drug effects , RNA, Bacterial/analysis , Cloning, Molecular , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Complementary/genetics , Genes, Bacterial , Helicobacter pylori/genetics , Polymerase Chain Reaction/methods , RNA, Bacterial/genetics , Sequence Analysis, DNAABSTRACT
AIM: To evaluate anti-Müllerian hormone (AMH) levels in patients with clinical and molecular diagnosis of 5alpha-reductase 2 deficiency. PATIENTS AND METHODS: Data from 14 patients whose age ranged from 21 days to 29 years were analyzed according to age and pubertal stage. Sexual ambiguity was rated as Prader III in 11 patients. LH, FSH, testosterone (T), dihydrotestosterone (DHT) and AMH serum levels were measured in all but two patients, who had been previously submitted to gonadectomy; T and DHT were also measured in 20 age-matched controls. RESULTS: Gonadotropin levels were normal in all but one patient who retained gonads (six of whom had reached puberty) and T/DHT ratio was elevated in all patients when compared to controls. All prepubertal patients had AMH levels < -1 SD for age, while most pubertal patients had AMH levels compatible with pubertal stage. CONCLUSIONS: Prepubertal patients with 5alpha-reductase 2 deficiency have AMH values in the lower part of the normal range. These data indicate that T does not need to be converted to DHT to inhibit AMH secretion by Sertoli cells.