Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 371(6530)2021 02 12.
Article in English | MEDLINE | ID: mdl-33574182

ABSTRACT

The evolutionarily conserved splicing regulator neuro-oncological ventral antigen 1 (NOVA1) plays a key role in neural development and function. NOVA1 also includes a protein-coding difference between the modern human genome and Neanderthal and Denisovan genomes. To investigate the functional importance of an amino acid change in humans, we reintroduced the archaic allele into human induced pluripotent cells using genome editing and then followed their neural development through cortical organoids. This modification promoted slower development and higher surface complexity in cortical organoids with the archaic version of NOVA1 Moreover, levels of synaptic markers and synaptic protein coassociations correlated with altered electrophysiological properties in organoids expressing the archaic variant. Our results suggest that the human-specific substitution in NOVA1, which is exclusive to modern humans since divergence from Neanderthals, may have had functional consequences for our species' evolution.


Subject(s)
Cerebral Cortex/growth & development , Cerebral Cortex/physiology , Neanderthals/genetics , Neurons/physiology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Alleles , Alternative Splicing , Amino Acid Substitution , Animals , Binding Sites , Biological Evolution , CRISPR-Cas Systems , Cell Proliferation , Cerebral Cortex/cytology , Gene Expression Regulation, Developmental , Genetic Variation , Genome , Genome, Human , Haplotypes , Hominidae/genetics , Humans , Induced Pluripotent Stem Cells , Nerve Net/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuro-Oncological Ventral Antigen , Organoids , Synapses/physiology
2.
J Cell Physiol ; 233(7): 5420-5430, 2018 07.
Article in English | MEDLINE | ID: mdl-29219187

ABSTRACT

Neonatal cardiomyocytes are instrumental for disease modeling, but the effects of different cell extraction methods on basic cell biological processes remain poorly understood. We assessed the influence of two popular methods to extract rat neonatal cardiomyocytes, Pre-plating (PP), and Percoll (PC) on cell structure, metabolism, and function. Cardiomyocytes obtained from PP showed higher gene expression for troponins, titin, and potassium and sodium channels compared to PC. Also, PP cells displayed higher levels of troponin I protein. Cells obtained from PC displayed higher lactate dehydrogenase activity and lactate production than PP cells, indicating higher anaerobic metabolism after 8 days of culture. In contrast, reactive oxygen species levels were higher in PP cells as indicated by ethidium and hydroxyethidium production. Consistent with these data, protein nitration was higher in PP cells, as well as nitrite accumulation in cell medium. Moreover, PP cells showed higher global intracellular calcium under basal and 1 mM isoprenaline conditions. In a calcium-transient assessment under electrical stimulation (0.5 Hz), PP cells displayed higher calcium amplitude than cardiomyocytes obtained from PC and using a traction force microscope technique we observed that PP cardiomyocytes showed the highest relaxation. Collectively, we demonstrated that extraction methods influence parameters related to cell structure, metabolism, and function. Overall, PP derived cells are more active and mature than PC cells, displaying higher contractile function and generating more reactive oxygen species. On the other hand, PC derived cells display higher anaerobic metabolism, despite comparable high yields from both protocols.


Subject(s)
Calcium/metabolism , Myocytes, Cardiac/cytology , Troponin I/genetics , Animals , Animals, Newborn , Cells, Cultured , Cytoplasm/genetics , Isoproterenol/pharmacology , Myocytes, Cardiac/physiology , Rats , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...