Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Rev ; 124(6): 3392-3415, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38466339

ABSTRACT

Magnetic ionic liquids (MILs) stand out as a remarkable subclass of ionic liquids (ILs), combining the desirable features of traditional ILs with the unique ability to respond to external magnetic fields. The incorporation of paramagnetic species into their structures endows them with additional attractive features, including thermochromic behavior and luminescence. These exceptional properties position MILs as highly promising materials for diverse applications, such as gas capture, DNA extractions, and sensing technologies. The present Review synthesizes key experimental findings, offering insights into the structural, thermal, magnetic, and optical properties across various MIL families. Special emphasis is placed on unraveling the influence of different paramagnetic species on MILs' behavior and functionality. Additionally, the Review highlights recent advancements in computational approaches applied to MIL research. By leveraging molecular dynamics (MD) simulations and density functional theory (DFT) calculations, these computational techniques have provided invaluable insights into the underlying mechanisms governing MILs' behavior, facilitating accurate property predictions. In conclusion, this Review provides a comprehensive overview of the current state of research on MILs, showcasing their special properties and potential applications while highlighting the indispensable role of computational methods in unraveling the complexities of these intriguing materials. The Review concludes with a forward-looking perspective on the future directions of research in the field of magnetic ionic liquids.

2.
J Chem Phys ; 155(6): 064506, 2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34391364

ABSTRACT

The applicability of deep eutectic solvents is determined by their physicochemical properties. In turn, the properties of eutectic mixtures are the result of the components' molar ratio and chemical composition. Owing to the relatively low viscosities displayed by alcohol-based deep eutectic solvents (DESs), their application in industry is more appealing. Modeling the composition-property relationships established in polyalcohol-based mixtures is crucial for both understanding and predicting their behavior. In this work, a physicochemical property-structure comparison study is made between four choline chloride polyalcohol-based DESs, namely, ethaline, propeline, propaneline, and glyceline. Physicochemical properties obtained from molecular dynamic simulations are compared to experimental data, whenever possible. The simulations cover the temperature range from 298.15 to 348.15 K. The simulated and literature experimental data are generally in good agreement for all the studied DESs. Structural properties, such as radial and spatial distribution functions, coordination numbers, hydrogen bond donor (HBD)-HBD aggregate formation, and hydrogen bonding are analyzed in detail. The higher prevalence of HBD:HBD and HBD:anion hydrogen bonds is likely to be the major reason for the relatively high density and viscosity of glyceline as well as for lower DES self-diffusions.

3.
Phys Chem Chem Phys ; 20(21): 14899-14918, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29845984

ABSTRACT

Mixing of ionic liquids provides new opportunities for their tuning, enabling the applications of ionic liquid mixtures to expand. At the same time, the genesis of the fundamental properties of ionic liquid mixtures is still poorly understood. In this study we carried out a molecular dynamics simulation of binary mixtures of 1-buthyl-3-methylimidazolium hexafluorophosphate, 1-buthyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and 1-buthyl-3-methylimidazolium tris(perfluoroethyl)trifluorophosphate ([C4mim][PF6] + [C4mim][NTf2], [C4mim][PF6] + [C4mim][FAP], [C4mim][FAP] + [C4mim][NTf2]) in a wide concentration range at 303.15 K and complemented it with quantum mechanical calculations. Three pure ionic liquids underwent the same kind of analysis for comparison purposes. We found that the addition of the [FAP]--anion to a mixture enhances the segregation of non-polar domains and weakens the hydrogen-bond network. The H-bonds in the studied mixtures are rather weak, as follows from QTAIM analysis, with the rarest occurrence for the [FAP]--anion. The competition of two anions in the mixtures for the most acidic hydrogen of the 1-butyl-3-methylimidazolium cation is reported. In most of the cases, the smaller anion ([PF6]- or [NTf2]-) with stronger charge concentration displaces the bigger one ([NTf2]- or [FAP]-) from the preferred coordination site. The existing nano-segregation in some mixtures notably slows down ion diffusion. Our results show that the differences in anion size, shape and nature are the main reasons for nano-segregation and the non-ideal behavior of ionic liquid mixtures.

4.
J Phys Chem B ; 121(48): 10906-10921, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29112448

ABSTRACT

In this work we developed a new force field model (FFM) for propylene glycol (PG) based on the OPLS all-atom potential. The OPLS potential was refined using quantum chemical calculations, taking into account the densities and self-diffusion coefficients. The validation of this new FFM was carried out based on a wide range of physicochemical properties, such as density, enthalpy of vaporization, self-diffusion coefficients, isothermal compressibility, surface tension, and shear viscosity. The molecular dynamics (MD) simulations were performed over a large range of temperatures (293.15-373.15 K). The comparison with other force field models, such as OPLS, CHARMM27, and GAFF, revealed a large improvement of the results, allowing a better agreement with experimental data. Specific structural properties (radial distribution functions, hydrogen bonding and spatial distribution functions) were then analyzed in order to support the adequacy of the proposed FFM. Pure propylene glycol forms a continuous phase, displaying no microstructures. It is shown that the developed FFM gives rise to suitable results not only for pure propylene glycol but also for mixtures by testing its behavior for a 50 mol % aqueous propylene glycol solution. Furthermore, it is demonstrated that the addition of water to the PG phase produces a homogeneous solution and that the hydration interactions prevail over the propylene glycol self-association interactions.

5.
J Phys Chem B ; 120(38): 10124-10137, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27623239

ABSTRACT

In this work, we combined various parameters found in the literature for the choline cation, chloride anion, and ethylene glycol to set up force field models (FFMs) for a eutectic mixture, namely, ethaline (1:2 choline chloride/ethylene glycol (ChCl:2EG)). The validation of these models was carried out on the basis of physical and chemical properties, such as the density, expansion coefficient, enthalpy of vaporization, self-diffusion coefficients, isothermal compressibility, surface tension, and shear viscosity. After the initial evaluation of the FFMs, a refinement was found necessary and accomplished by taking into account polarization effects in a mean-field manner. This was achieved by rescaling the electrostatic charges of the ions based on partial charges derived from ab initio molecular dynamics (MD) simulations of the bulk system. Classical all-atom MD simulations performed over a large range of temperatures (298.15-373.15 K) using the refined FFMs clearly showed improved results, allowing a better prediction of experimental properties. Specific structural properties (radial distribution functions and hydrogen bonding) were then analyzed in order to support the adequacy of the proposed refinement. The final selected FFM leads to excellent agreement between simulated and experimental data on dynamic and structural properties. Moreover, compared to the previously reported force field model (Perkins, S. L.; Painter, P.; Colina, C. M. Experimental and Computational Studies of Choline Chloride-Based Deep Eutectic Solvents. J. Chem. Eng. Data 2014, 59, 3652-3662), a 10% improvement in simulated transport properties, i.e., self-diffusion coefficients, was achieved. The isothermal compressibility, surface tension, and shear viscosity for ethaline are accessed in MD simulations for the first time.

6.
J Phys Chem B ; 119(30): 9883-92, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26101957

ABSTRACT

The results of a systematic molecular dynamics study of the interfacial structure between the gold (100) surface and two room-temperature ionic liquids, namely, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) and 1-butyl-3-methylimadazolium bis(trifluoromethylsulfonyl)imide ([BMIm][NTf2]), are herein reported. It is found that near an uncharged surface the IL structure differs from its bulk, having an enhanced density extended until the two first layers. Interfacial layering is clearly observed at the gold surface, with a higher effect for the [BMIm][NTf2] IL but a higher packing for [BMIm][PF6]. In both ILs the alkyl side chains are oriented parallel to the interface while the imidazolium rings tend to be parallel to the interface in about 60% of the cases. The presence of the interface has a higher impact on the orientation of the cations than on the chemical properties of the counterion. The surface potential drop across the interface is more pronounced toward a negative value for ([BMIm][PF6]) than for ([BMIm][NTf2]), due to relatively larger local density of the anions for ([BMIm][PF6]) near the gold surface.

SELECTION OF CITATIONS
SEARCH DETAIL