Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(5)2024 05 20.
Article in English | MEDLINE | ID: mdl-38793690

ABSTRACT

The Mayaro virus (MAYV) is an arbovirus with emerging potential, though with a limited understanding of its epidemiology and evolution due to the lack of studies and surveillance. Here, we investigated 71 MAYV genome sequences from the Americas available at GenBank and characterized the phylogenetic relationship among virus strains. A phylogenetic analysis showed that sequences were grouped according to the genotypes L, D, and N. Genotype D sequences were closely related to sequences collected in adjacent years and from their respective countries, suggesting that isolates may have originated from circulating lineages. The coalescent analysis demonstrated similar results, indicating the continuous circulation of the virus between countries as well. An unidentified sequence from the USA was grouped with genotype D, suggesting the insertion of this genotype in the country. Furthermore, the recombination analysis detected homologous and three heterologous hybrids which presented an insertion into the nsP3 protein. Amino acid substitutions among sequences indicated selective pressure sites, suggesting viral adaptability. This also impacted the binding affinity between the E1-E2 protein complex and the Mxra8 receptor, associated with MAYV entry into human cells. These results provide information for a better understanding of genotypes circulating in the Americas.


Subject(s)
Evolution, Molecular , Genetic Variation , Genome, Viral , Genotype , Phylogeny , Americas/epidemiology , Humans , Alphavirus/genetics , Alphavirus/classification , Alphavirus/isolation & purification , Animals , Recombination, Genetic , Alphavirus Infections/virology , Alphavirus Infections/epidemiology
2.
Viruses ; 15(9)2023 09 06.
Article in English | MEDLINE | ID: mdl-37766292

ABSTRACT

The SARS-CoV-2 entry into host cells is mainly mediated by the interactions between the viral spike protein (S) and the ACE-2 cell receptor, which are highly glycosylated. Therefore, carbohydrate binding agents may represent potential candidates to abrogate virus infection. Here, we evaluated the in vitro anti-SARS-CoV-2 activity of two mannose-binding lectins isolated from the Brazilian plants Canavalia brasiliensis and Dioclea violacea (ConBR and DVL). These lectins inhibited SARS-CoV-2 Wuhan-Hu-1 strain and variants Gamma and Omicron infections, with selectivity indexes (SI) of 7, 1.7, and 6.5, respectively for ConBR; and 25, 16.8, and 22.3, for DVL. ConBR and DVL inhibited over 95% of the early stages of the viral infection, with strong virucidal effect, and also protected cells from infection and presented post-entry inhibition. The presence of mannose resulted in the complete lack of anti-SARS-CoV-2 activity by ConBR and DVL, recovering virus titers. ATR-FTIR, molecular docking, and dynamic simulation between SARS-CoV-2 S and either lectins indicated molecular interactions with predicted binding energies of -85.4 and -72.0 Kcal/Mol, respectively. Our findings show that ConBR and DVL lectins possess strong activities against SARS-CoV-2, potentially by interacting with glycans and blocking virus entry into cells, representing potential candidates for the development of novel antiviral drugs.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , Mannose-Binding Lectins , SARS-CoV-2 , Molecular Docking Simulation , Lectins/pharmacology
3.
Int J Biol Macromol ; 227: 630-640, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36529220

ABSTRACT

Zika virus is the etiologic agent of Zika fever, and has been previously associated with cases of microcephaly, drawing the attention of the health authorities worldwide. However, no vaccine or antiviral are currently available. Phospholipases A2 (PLA2) isolated from snake venoms have demonstrated antiviral activity against several viruses. Here we demonstrated the anti-ZIKV activity of bothropstoxins-I and II (BthTX-I and II) isolated from Bothrops jararacussu venom. Vero E6 cells were infected with ZIKVPE243 in the presence of compounds for 72 h, when virus titers were evaluated. BthTX-I and II presented strong dose-dependent inhibition of ZIKV, with a SI of 149.1 and 1.44 × 105, respectively. These toxins mainly inhibited the early stages of the replicative cycle, such as during the entry of ZIKV into host cells, as shown by the potent virucidal effect, suggesting the action of these toxins on the virus particles. Moreover, BthTX-I and II presented significant activity towards post-entry stages of the ZIKV replicative cycle. Molecular docking analyses showed that BthTX-I and II potentially interact with DII and DIII domains from ZIKV Envelope protein. Our findings show that these PLA2s could be used as useful templates for the development of future antiviral candidate drugs against Zika fever.


Subject(s)
Bothrops , Crotalid Venoms , Zika Virus Infection , Zika Virus , Animals , Humans , Antiviral Agents/pharmacology , Bothrops/metabolism , Zika Virus Infection/drug therapy , Molecular Docking Simulation , Crotalid Venoms/metabolism , Antibodies
4.
Am J Infect Control ; 51(3): 248-254, 2023 03.
Article in English | MEDLINE | ID: mdl-36375707

ABSTRACT

BACKGROUND: Reducing the transmission of SARS-CoV-2 from asymptomatic and pre-symptomatic patients is critical in controlling the circulation of the virus. METHODS: This study evaluated the prevalence of Reverse transcription polymerase chain reaction (RT-PCR) positivity in serial tests in 429 asymptomatic health care workers (HCW) and its impact on absenteeism. HCW from a COVID-19 reference hospital were tested, screened, and placed on leave. A time-series segmented regression of weekly absenteeism rates was used, and cases of infection among hospitalized patients were analyzed. Viral gene sequencing and phylogenetic analysis were performed on samples from HCW who had a positive result. RESULTS: A significant decrease in absenteeism was detected 3-4 weeks after the intervention at a time of increased transmission within the city. The prevalence of RT-PCR positivity among asymptomatic professionals was 17.3%. Phylogenetic analyses (59 samples) detected nine clusters, two of them strongly suggestive of intrahospital transmission with strains (75% B.1.1.28) circulating in the region during this period. CONCLUSIONS: Testing and placing asymptomatic professionals on leave contributed to control strategy for COVID-19 transmission in the hospital environment, and in reducing positivity and absenteeism, which directly influences the quality of care and exposes professionals to an extra load of stress.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , COVID-19 Nucleic Acid Testing , Pandemics/prevention & control , Absenteeism , Phylogeny , Health Personnel , Hospitals , COVID-19 Testing
5.
Biologicals ; 80: 43-52, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36175304

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in Wuhan, China, is the causative agent of the coronavirus disease 2019 (COVID-19). Since its first notification in São Paulo state (SP) on 26th February 2020, more than 22,300,000 cases and 619,000 deaths were reported in Brazil. In early pandemic, SARS-CoV-2 spread locally, however, over time, this virus was disseminated to other regions of the country. Herein, we performed genomic sequencing and phylogenetic analysis of SARS-CoV-2 using 20 clinical samples of COVID-19 confirmed cases from 9 cities of Minas Gerais state (MG), in order to evaluate the molecular properties of circulating viral strains in this locality from March to May 2020. Our analyses demonstrated the circulation of B.1 lineage isolates in the investigated locations and nucleotide substitutions were observed into the genomic regions related to important viral structures. Additionally, sequences generated in this study clustered with isolates from SP, suggesting a dissemination route between these two states. Alternatively, monophyletic groups of sequences from MG and other states or country were observed, indicating independent events of virus introduction. These results reinforce the need of genomic surveillance for understand the ongoing spread of emerging viral pathogens.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Phylogeny , Brazil/epidemiology , Genome, Viral/genetics
6.
Access Microbiol ; 4(3): 000326, 2022.
Article in English | MEDLINE | ID: mdl-35693474

ABSTRACT

Hepatitis C virus (HCV) is responsible for more than 180 million infections worldwide, and about 80 % of infections are reported in Low and Middle-income countries (LMICs). Therapy is based on the administration of interferon (INF), ribavirin (RBV) or more recently Direct-Acting Antivirals (DAAs). However, amino acid substitutions associated with resistance (RAS) have been extensively described and can contribute to treatment failure, and diagnosis of RAS requires considerable infrastructure, not always locally available. Dried serum spots (DSS) sampling is an alternative specimen collection method, which embeds drops of serum onto filter paper to be transported by posting to a centralized laboratory. Here, we assessed feasibility of genotypic analysis of HCV from DSS in a cohort of 80 patients from São Paulo state Brazil. HCV RNA was detected on DSS specimens in 83 % of samples of HCV infected patients. HCV genotypes 1a, 1b, 2a, 2c and 3a were determined using the sequence of the palm domain of NS5B region, and RAS C316N/Y, Q309R and V321I were identified in HCV 1b samples. Concerning therapy outcome, 75 % of the patients who used INF +RBV as a previous protocol of treatment did not respond to DAAs, and 25 % were end-of-treatment responders. It suggests that therapy with INF plus RBV may contribute for non-response to a second therapeutic protocol with DAAs. One patient that presented RAS (V321I) was classified as non-responder, and combination of RAS C316N and Q309R does not necessarily imply in resistance to treatment in this cohort of patients. Data presented herein highlights the relevance of studying circulating variants for a better understanding of HCV variability and resistance to the therapy. Furthermore, the feasibility of carrying out genotyping and RAS phenotyping analysis by using DSS card for the potential of informing future treatment interventions could be relevant to overcome the limitations of processing samples in several location worldwide, especially in LMICs.

7.
Microb Genom ; 7(11)2021 11.
Article in English | MEDLINE | ID: mdl-34730486

ABSTRACT

Since the beginning of the SARS-CoV-2 spread in Brazil, few studies have been published analysing the variability of viral genome. Herein, we described the dynamic of SARS-CoV-2 strains circulating in Brazil from May to September 2020, to better understand viral changes that may affect the ongoing pandemic. Our data demonstrate that some of the mutations identified are currently observed in variants of interest and variants of concern, and emphasize the importance of studying previous periods in order to comprehend the emergence of new variants. From 720 SARS-CoV-2 genome sequences, we found few sites under positive selection pressure, such as the D614G (98.5 %) in the spike, that has replaced the old variant; the V1167F in the spike (41 %), identified in the P.2 variant that emerged from Brazil during the period of analysis; and I292T (39 %) in the N protein. There were a few alterations in the UTRs, which was expected, however, our data suggest that the emergence of new variants was not influenced by mutations in UTR regions, since it maintained its conformational structure in most analysed sequences. In phylogenetic analysis, the spread of SARS-CoV-2 from the large urban centres to the countryside during these months could be explained by the flexibilization of social isolation measures and also could be associated with possible new waves of infection. These results allow a better understanding of SARS-CoV-2 strains that have circulated in Brazil, and thus, with relevant infomation, provide the potential viral changes that may have affected and/or contributed to the current and future scenario of the COVID-19 pandemic.


Subject(s)
COVID-19/virology , Genome, Viral , Mutation , SARS-CoV-2/genetics , 5' Untranslated Regions/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Amino Acid Substitution , Brazil/epidemiology , COVID-19/epidemiology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , Selection, Genetic , Young Adult
8.
medRxiv ; 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33758901

ABSTRACT

With the emergence of SARS-CoV-2 variants that may increase transmissibility and/or cause escape from immune responses 1-3 , there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant first detected in the UK 4,5 could be serendipitously detected by the ThermoFisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike Δ69-70, would cause a "spike gene target failure" (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern that lack spike Δ69-70, such as B.1.351 (also 501Y.V2) detected in South Africa 6 and P.1 (also 501Y.V3) recently detected in Brazil 7 . We identified a deletion in the ORF1a gene (ORF1a Δ3675-3677) in all three variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a Δ3675-3677 as the primary target and spike Δ69-70 to differentiate, we designed and validated an open source PCR assay to detect SARS-CoV-2 variants of concern 8 . Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence spread of B.1.1.7, B.1.351, and P.1.

SELECTION OF CITATIONS
SEARCH DETAIL
...