Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sustain Chem Eng ; 11(27): 9989-10000, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37448722

ABSTRACT

Marine biofouling negatively impacts industries with off-shore infrastructures, such as naval, oil, and aquaculture. To date, there are no ideal sustainable, economic, and environmentally benign solutions to deal with this phenomenon. The advances achieved in green solvents, as well as its application in different industries, such as pharmaceutical and biotechnology, have promoted the emergence of deep eutectic systems (DES). These eutectic systems have applications in various fields and can be revolutionary in the marine-based industrial sector. In this study, the main objective was to investigate the potential use of hydrophobic DES (HDES) based on menthol and natural organic acids for their use as marine antifouling coatings. Our strategy encompassed the physicochemical characterization of different formulations, which allowed us to identify the most appropriate molar ratio and intermolecular interactions for HDES formations. The miscibility of the resulting HDES with the marine coating has been evaluated and proven to be successful. The Men/OL (1:1) system proved to be the most promising in terms of cost-production and thus was the one used in subsequent antifouling tests. The cytotoxicity of this HDES was evaluated using an in vitro cell model (HaCat cells) showing no significant toxicity. Furthermore, the application of this system incorporated into coatings that are used in marine structures was also studied using marine species (Mytilus edulis mussels and Patella vulgata limpets) to evaluate both their antifouling and ecotoxicity effects. HDES Men/OL (1:1) incorporated in marine coatings was promising in reducing marine macrofouling and also proved to be effective at the level of microfouling without viability impairment of the tested marine species. It was revealed to be more efficient than using copper oxide, metallic copper, or ivermectin as antifouling agents. Biochemical assays performed on marine species showed that this HDES does not induce oxidative stress in the tested species. These results are a strong indication of the potential of this HDES to be sustainable and efficiently used in marine fouling control technologies.

2.
Biology (Basel) ; 12(4)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37106777

ABSTRACT

Climate change is leading to the loss of oxygen content in the oceans and endangering the survival of many marine species. Due to sea surface temperature warming and changing circulation, the ocean has become more stratified and is consequently losing its oxygen content. Oviparous elasmobranchs are particularly vulnerable as they lay their eggs in coastal and shallow areas, where they experience significant oscillations in oxygen levels. Here, we investigated the effects of deoxygenation (93% air saturation) and hypoxia (26% air saturation) during a short-term period (six days) on the anti-predator avoidance behavior and physiology (oxidative stress) of small-spotted catshark (Scyliorhinus canicula) embryos. Their survival rate decreased to 88% and 56% under deoxygenation and hypoxia, respectively. The tail beat rates were significantly enhanced in the embryos under hypoxia compared to those exposed to deoxygenation and control conditions, and the freeze response duration showed a significant opposite trend. Yet, at the physiological level, through the analyses of key biomarkers (SOD, CAT, GPx, and GST activities as well as HSP70, Ubiquitin, and MDA levels), we found no evidence of increased oxidative stress and cell damage under hypoxia. Thus, the present findings show that the projected end-of-the-century deoxygenation levels elicit neglectable biological effects on shark embryos. On the other hand, hypoxia causes a high embryo mortality rate. Additionally, hypoxia makes embryos more vulnerable to predators, because the increased tail beat frequency will enhance the release of chemical and physical cues that can be detected by predators. The shortening of the shark freeze response under hypoxia also makes the embryos more prone to predation.

3.
Environ Sci Pollut Res Int ; 30(14): 40218-40229, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36607574

ABSTRACT

Deep eutectic systems (DES) have shown increasing popularity in last decade; however, the number of studies on the potential toxicity towards living organisms remains scarce. These studies are of the utmost importance to infer on the claimed non-toxicity and biocompatibility of DES. Most articles published, at this moment, only evaluate the toxicity towards a cell model or in different strains of bacteria. For this purpose, in this work, the effect of two DES (betaine:sorbitol:water 1:1:3 and betaine:glycerol 1:2) and their individual components were evaluated at different concentrations after administered via intraperitoneal injection in zebrafish (Danio rerio). The total antioxidant capacity, lipoperoxidation, and the activity of various enzymes that work in different antioxidant pathways (superoxide dismutase, glutathione peroxidase, catalase, and glutathione S-transferase) were assessed. The results show no significant toxicity within the tested concentrations: up to 5000 µM and 3000 µM, for the assays using the system betaine:sorbitol:water 1:1:3 and for betaine:glycerol 1:2, respectively. The toxicity of individual components was studied up to 1000 µM. Based on the encouraging results that have been obtained, it is safe to conclude that these two deep eutectic systems can be used as the new class of environmentally friendly solvents.


Subject(s)
Betaine , Glycerol , Animals , Antioxidants , Zebrafish , Solvents , Water
4.
Aquat Toxicol ; 253: 106346, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36327686

ABSTRACT

Humans have exhaustively combusted fossil fuels, and released pollutants into the environment, at continuously faster rates resulting in global average temperature increase and seawater pH decrease. Climate change is forecasted to exacerbate the effects of pollutants such as the emergent rare earth elements. Therefore, the objective of this study was to assess the combined effects of rising temperature (Δ = + 4 °C) and decreasing pH (Δ = - 0.4 pH units) on the bioaccumulation and elimination of gadolinium (Gd) in the bioindicator bivalve species Spisula solida (Surf clam). We exposed surf clams to 10 µg L-1 of GdCl3 for seven days, under warming, acidification, and their combination, followed by a depuration phase lasting for another 7 days and investigated the Gd bioaccumulation and oxidative stress-related responses after 1, 3 and 7 days of exposure and the elimination phase. Gadolinium accumulated after just one day with values reaching the highest after 7 days. Gadolinium was not eliminated after 7 days, and elimination is further hampered under climate change scenarios. Warming and acidification, and their interaction did not significantly impact Gd concentration. However, there was a significant interaction on clam's biochemical response. The augmented total antioxidant capacity and lipid peroxidation values show that the significant impacts of Gd on the oxidative stress response are enhanced under warming while the increased superoxide dismutase and catalase values demonstrate the combined impact of Gd, warming & acidification. Ultimately, lipid damage was greater in clams exposed to warming & Gd, which emphasizes the enhanced toxic effects of Gd in a changing ocean.


Subject(s)
Bivalvia , Spisula , Water Pollutants, Chemical , Humans , Animals , Gadolinium/toxicity , Hydrogen-Ion Concentration , Water Pollutants, Chemical/toxicity , Seawater , Climate Change , Oceans and Seas
5.
Chemosphere ; 302: 134850, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35551939

ABSTRACT

Lanthanum (La) is one of the most abundant emergent rare earth elements. Its release into the environment is enhanced by its use in various industrial applications. In the aquatic environment, emerging contaminants are one of the stressors with the ability to compromise the fitness of its inhabitants. Warming and acidification can also affect their resilience and are another consequence of the growing human footprint on the planet. However, from information gathered in the literature, a study on the effects of ocean warming, acidification, and their interaction with La was never carried out. To diminish this gap of knowledge, we explored the effects, combined and as single stressors, of ocean warming, acidification, and La (15 µg L-1) accumulation and elimination on the surf clam (Spisula solida). Specimens were exposed for 7 days and depurated for an additional 7-day period. Furthermore, a robust set of membrane-associated, protein, and antioxidant enzymes and non-enzymatic biomarkers (LPO, HSP, Ub, SOD, CAT, GPx, GST, TAC) were quantified. Lanthanum was bioaccumulated after just one day of exposure, in both control and climate change scenarios. A 7-day depuration phase was insufficient to achieve control values and in a warming scenario, La elimination was more efficient. Biochemical response was triggered, as highlighted by enhanced SOD, CAT, GST, and TAC levels, however as lipoperoxidation was observed it was insufficient to detoxify La and avoid damage. The HSP was largely inhibited in La treatments combined with warming and acidification. Concomitantly, lipoperoxidation was highest in clams exposed to La, warming, and acidification combined. The results highlight the toxic effects of La on this bivalve species and its enhanced potential in a changing world.


Subject(s)
Bivalvia , Spisula , Water Pollutants, Chemical , Animals , Climate Change , Hydrogen-Ion Concentration , Lanthanum/toxicity , Oceans and Seas , Seawater , Superoxide Dismutase , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
Chemosphere ; 299: 134415, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35351475

ABSTRACT

Deep Eutectic Systems (DES) have emerged as a "green alternative" to organic solvents and have been coined as biocompatible and biodegradable. However, the number of studies concerning the real biodegradability and biocompatibility are scarce. Thus, to study the toxicity of certain DES, two different approaches were used: i) zebrafish exposure via water, where the system (DES) was tested at potentially realistic environmental concentrations and ii) via intraperitoneal injection, where the system was tested in different concentrations, relevant to the pharmaceutical industry. These studies were performed using zebrafish, a standardized animal model often used in biomedicine and toxicological assays. The results show low toxicity according to tested concentrations (up to 73.47 µM), when the system CA:T:W, with a 2:1:3 molar ratio, was tested through exposure via water and also in the intraperitoneal injection tests with concentrations up to 6000 µM. The activity of different enzymes involved in antioxidant pathways (glutathione S-transferase, catalase, glutathione peroxidase), the total antioxidant capacity (TAC) and lipoperoxidation (MDA content) were determined suggesting low toxicity of the tested system (DES). The promising results herein presented show that DES present the potential to be used as the new class of green solvents, not only for use in the pharmaceutical industry, but also in cosmetic and chemical engineering processes without causing negative impact on living organisms.


Subject(s)
Deep Eutectic Solvents , Zebrafish , Animals , Antioxidants , Solvents/chemistry , Solvents/toxicity , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...