Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Prosthet Dent ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729792

ABSTRACT

STATEMENT OF PROBLEM: Incorporating and coating with antimicrobials are techniques that can confer antimicrobial action on polymethyl methacrylate (PMMA) denture bases, which can accumulate microorganisms and promote oral and systemic disease. PURPOSE: The purpose of this systematic review was to answer the question: "Do techniques for incorporating and coating antimicrobial agents in PMMA promote antimicrobial action?" MATERIAL AND METHODS: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist guidelines were followed, and the SCOPUS, PubMed/Medline, EMBASE, and Science Direct databases searched. The studies were selected in 2 stages, reading the titles and abstracts and then reading the selected studies in full. The risk of bias was analyzed by adapting the quasi-experimental studies tool by the Joanna Briggs Institute (JBI). RESULTS: A total of 970 articles were found in the databases; 71 were duplicates and, after reading the abstracts, 38 were selected for full reading. From these, 6 were excluded because they did not fulfill the inclusion criteria, and 32 studies were included in this review. Autopolymerizing, heat- polymerizing, and light-polymerizing resins were evaluated, with the incorporating technique prevailing over the coating, but both techniques effectively promoted antimicrobial activity. CONCLUSIONS: Incorporating and coating antimicrobial agents are effective methods of promoting antimicrobial activity in PMMA. Combining the 2 methods led to increased antimicrobial activity compared with each individually.

2.
Saudi Dent J ; 36(5): 733-739, 2024 May.
Article in English | MEDLINE | ID: mdl-38766297

ABSTRACT

Introduction: Post-processing (PP) is performed to improve the surface, which can favor microbial adhesion and consequent pathological manifestations that impair the indication of polylactic acid (PLA) obtained by fused filament fabrication (FFF) for biomedical applications. This aims to evaluate the influence of chemical, thermal, and mechanical PP on the adhesion of Streptococcus mutants and Candida albicans, roughness, and wettability of the PLA obtained by FFF with and without thermal aging. Methods: The specimens were designed in the 3D modeling program and printed. The chemical PP was performed by immersion in chloroform, the thermal by the annealing method, and the mechanical by polishing. Thermal aging was performed by alternating the temperature from 5 °C to 55 °C with 5000 cycles. Colony-forming unit (CFU/mL) counting was performed on dual-species biofilm of C. albicans and S. mutans. Roughness was analyzed by rugosimeter and wettability by the sessile drop technique. Data were verified for normality using the Shapiro-Wilk test, two-way ANOVA (α = 0.05) applied for CFU and wettability, and Kruskal-Wallis (α = 0.05) for roughness. Results: Chemical, thermal, and mechanical PP methods showed no influence on CFU/mL of C. albicans (p = 0.296) and S. mutans (p = 0.055). Thermal aging did not influence microbial adhesion. Chemical PP had lower roughness, which had increased after aging. Wettability of the mechanical PP was lower. Conclusions: Post-processing techniques, do not present an influence on the adhesion of S. mutans and C. albicans in PLA obtained by FFF, chemical PP reduced roughness, and mechanical reduced wettability. Thermal aging did not alter the microbial adhesion and altered the roughness and wettability.

3.
Methods Mol Biol ; 2726: 15-43, 2024.
Article in English | MEDLINE | ID: mdl-38780726

ABSTRACT

The nearest-neighbor (NN) model is a general tool for the evaluation for oligonucleotide thermodynamic stability. It is primarily used for the prediction of melting temperatures but has also found use in RNA secondary structure prediction and theoretical models of hybridization kinetics. One of the key problems is to obtain the NN parameters from melting temperatures, and VarGibbs was designed to obtain those parameters directly from melting temperatures. Here we will describe the basic workflow from RNA melting temperatures to NN parameters with the use of VarGibbs. We start by a brief revision of the basic concepts of RNA hybridization and of the NN model and then show how to prepare the data files, run the parameter optimization, and interpret the results.


Subject(s)
Nucleic Acid Conformation , Nucleic Acid Denaturation , Thermodynamics , Transition Temperature , RNA/chemistry , RNA/genetics , Software , Algorithms , Nucleic Acid Hybridization/methods
4.
J Dent ; 145: 104984, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583645

ABSTRACT

OBJECTIVES: To incorporate the nanostructured silver vanadate decorated with silver nanoparticles (AgVO3) into denture base materials: heat-cured (HC) and 3D printed (3DP) resins, at concentrations of 2.5 %, 5 %, and 10 %; and to evaluate the antimicrobial activity in two multi-species biofilm: (1) Candida albicans, Candida glabrata, and Streptococcus mutans, (2) Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus, and the wettability. METHODS: The AgVO3 was added to the HC powder, and printed samples were coated with 3DP with AgVO3 incorporated. After biofilm formation, the antimicrobial activity was evaluated by colony forming units per milliliter (CFU/mL), metabolic activity, and epifluorescence microscopy. Wettability was assessed by the contact angles with water and artificial saliva. RESULTS: In biofilm (1), HC-5 % and HC-10 % showed activity against S. mutans, HC-10 % against C. glabrata, and HC-10 % and 3DP-10 % had higher CFU/mL of C. albicans. 3DP-5 % had lower metabolic activity than the 3DP control. In biofilm (2), HC-10 % reduced S. aureus and P. aeruginosa, and HC-5 %, 3DP-2.5 %, and 3DP-5 % reduced S. aureus. 3DP incorporated with AgVO3, HC-5 %, and HC-10 % reduced biofilm (2) metabolic activity. 3DP-5 % and 3DP-10 % increased wettability with water and saliva. CONCLUSION: HC-10 % was effective against C. glabrata, S. mutans, P. aeruginosa, and S. aureus, and HC-5 % reduced S. mutans and S. aureus. For 3DP, 2.5 % and 5 % reduced S. aureus. The incorporation of AgVO3 into both resins reduced the metabolic activity of biofilms but had no effect on C. albicans. The wettability of the 3DP with water and saliva increased with the addition of AgVO3. CLINICAL SIGNIFICANCE: The incorporation of silver vanadate into the denture base materials provides antimicrobial efficacy and can prevent the aggravation of oral and systemic diseases. The incorporation of nanomaterials into printed resins is challenging and the coating is an alternative to obtain the inner denture base with antimicrobial effect.


Subject(s)
Biofilms , Candida albicans , Denture Bases , Metal Nanoparticles , Pseudomonas aeruginosa , Silver , Staphylococcus aureus , Streptococcus mutans , Vanadates , Wettability , Biofilms/drug effects , Streptococcus mutans/drug effects , Candida albicans/drug effects , Staphylococcus aureus/drug effects , Vanadates/pharmacology , Vanadates/chemistry , Pseudomonas aeruginosa/drug effects , Silver/pharmacology , Silver/chemistry , Denture Bases/microbiology , Metal Nanoparticles/chemistry , Anti-Infective Agents/pharmacology , Candida glabrata/drug effects , Printing, Three-Dimensional , Materials Testing , Humans , Nanostructures , Silver Compounds/pharmacology , Silver Compounds/chemistry , Dental Materials/chemistry , Dental Materials/pharmacology
5.
J Prosthet Dent ; 131(4): 742.e1-742.e8, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38383281

ABSTRACT

STATEMENT OF PROBLEM: To improve the osseointegration of dental implants and reduce microbiological growth, different micro- and nanoscale surface topographies can be used. PURPOSE: The purpose of this in vitro study was to evaluate the influence of Ti-6Al-4V with 4 surfaces, machined (DU), machined+hydroxyapatite (DUHAp), machined+acid-alkali treatment (DUAA), and additive manufacturing (DMA), on the physical, chemical, and microbiological properties. MATERIAL AND METHODS: The topography of Ti-6Al-4V disks with the 4 surfaces was evaluated by scanning electron microscopy (SEM), the chemical composition by energy dispersive X-ray spectroscopy (EDS), and the crystalline structure by X-ray diffraction (XRD). Physical and chemical properties were analyzed by using wettability and surface free energy, roughness, and microbial adhesion against Staphylococcus aureus by colony forming units (CFU). One-way ANOVA analysis of variance and the Tukey multiple comparisons test were applied to evaluate the data, except CFU, which was submitted to the Kruskal-Wallis nonparametric test (α=.05). RESULTS: DU photomicrographs showed a topography characteristic of a polished machined surface, DUHAp and DUAA exhibited patterns corresponding to the surface modifications performed, and in DMA the presence of partially fused spherical particles was observed. The EDS identified chemical elements inherent in the Ti-6Al-4V, and the DUHAp and DUAA disks also had the ions from the treatments applied. XRD patterns revealed similarities between DU and DMA, as well as characteristic peaks of hydroxyapatite (HA) in the DUHAp disk and the DUAA. Compared with DU and DMA the DUHAp and DUAA groups showed hydrophilic behavior with smaller contact angles and higher surface free energy (P<.05). DMA showed a higher mean value of roughness, different from the others (P<.05), and a higher CFU for S. aureus (P=.006). CONCLUSIONS: DUHAp and DUAA showed similar behaviors regarding wettability, surface free energy, and bacterial adhesion. Among the untreated groups, DMA exhibited higher roughness, bacterial adhesion, and lower wettability and surface free energy.


Subject(s)
Alloys , Titanium , Titanium/therapeutic use , Titanium/chemistry , Staphylococcus aureus , Durapatite/therapeutic use , Wettability , Surface Properties , Microscopy, Electron, Scanning
6.
Heliyon ; 10(4): e25525, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38384570

ABSTRACT

Objective: The aim of this study was to evaluate the roughness, hardness, and color change of pit and fissure sealants of two commercial brands (Fluroshield ™ and Ultraseal XT ™) incorporated with nanostructured silver vanadate nanomaterial decorated with silver nanoparticles (ß-AgVO3) in concentrations (0% - control, 2.5% and 5%). Material and methods: Two commercial brands Fluroshield TM and Ultraseal XT ™ were used to make the samples with dimensions of 6 × 6 × 4 mm. The control group was made according to the manufacturer's instructions and in the groups with the addition of ß-AgVO3, the nanomaterial was added proportionally by mass at percentages of 2.5% and 5%. Roughness properties were evaluated using a 3D Laser Confocal Microscope (n = 10), Knoop microhardness by Microdurometer (n = 10), and color change by Portable Color Spectrophotometer on the CIEDE2000 system (n = 10). Data were evaluated by one-way ANOVA with Bonferroni adjustment and Tukey's mean comparison test at a 5% significance level. Results: Ultraseal XT ™ sealant roughness showed a significant difference between concentrations with the highest mean for the 5% group (P = 0.010). Regarding the hardness, both sealants showed no significant difference between the groups. Fluroshield ™ sealant showed a significant difference in ΔE00 between the control-2.5% 24.93 (3.49) and control-5% 28.41 (2.58). Conclusion: It may be concluded that the incorporation of ß-AgVO3 influenced the increase in roughness for Ultraseal XT ™ pit and fissure sealant, did not interfere with the microhardness of both sealants, and promoted a change in the color of Fluroshield ™ sealant within clinically acceptable limits.

7.
Heliyon ; 10(1): e23279, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38163102

ABSTRACT

Wear resistance is one of the properties that must be considered for maintaining the long-term functionality of artificial teeth in dental prostheses. This property can be altered by the method of tooth fabrication, the material, the chewing force, and the relationship to the antagonist tooth. This systematic review evaluated the wear resistance of artificial teeth obtained by the additive manufacturing method and aims to answer the question, "Do artificial teeth for dental prostheses obtained by additive manufacturing show wear resistance similar to prefabricated ones?" The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Checklist guidelines were followed with a customized search in Scopus, PubMed/Medline, Embase, Science Direct, and Google Scholar databases on August 30, 2023. The inclusion criteria were artificial teeth for dental prostheses in acrylic resin by additive manufacturing and comparing the wear resistance with conventional prefabricated teeth, in vitro and English studies, without time restriction. And excluded if 1) do not make artificial teeth by additive manufacturing or that were metal or ceramic teeth; 2) clinical trials, animal studies, review articles, case reports, letters to the editor, short communication, book chapters; 3) another language that is not English. The selection was in two steps, reading the titles and abstracts, followed by reading the selected studies in full. The risk of bias analysis was performed with the adaptation of the quasi-experimental studies tool by Joanna Briggs Institute. Four hundred and twelve articles were found in the databases, after the selection steps and application of eligibility criteria, 6 articles were included for qualitative data analysis and presented low risk of bias. For teeth obtained by additive manufacturing, 2 studies reported lower wear resistance, 2 studies had higher resistance, and 2 similar compared to prefabricated ones. Additive manufactured teeth compared to prefabricated teeth show influences on wear resistance due to differences in material composition, relationship to the antagonist's tooth, applied force, chewing cycles, and processing methods.

8.
J Prosthet Dent ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37019748

ABSTRACT

STATEMENT OF PROBLEM: The drilling speed used for preparing dental implants may affect bone-implant contact (BIC), implant stability quotient (ISQ), and bone area fraction occupancy (BAFO). Different rotational speeds and the presence or absence of irrigation during site preparation have been investigated, but an established protocol for achieving the best osseointegration results is lacking. PURPOSE: The purpose of this systematic review was to investigate the influence of drill rotational speed on bone drilling for dental implant placement and its relationship with osseointegration. MATERIAL AND METHODS: This review included the preferred reporting items for systematic reviews and meta-analyses (PRISMA) and was registered in the international prospective register of systematic reviews (PROSPERO) database. Electronic searches were performed in the MEDLINE (PubMed), Scopus, Science Direct, and Embase databases. The risk of bias was analyzed by using the systematic review center for laboratory animal experimentation (SYRCLE). RESULTS: A total of 1282 articles were found, and after removing duplicates and applying the eligibility criteria to in vivo articles on animals that addressed drilling speed and its relationship to osseointegration, 8 articles were selected for analysis. Of these, 5 articles showed no statistical differences, and 3 others showed significantly better osseointegration results by analyzing the parameters of BIC, BAFO, ISQs, and pull-out forces (PoFs). In all selected articles, high-speed drilling was performed with irrigation. CONCLUSIONS: Although drilling speed seems to affect bone perforation, no definitive protocol was found in the literature consulted. The results vary depending on the combination of different factors, including bone type, irrigation, and drilling speed.

9.
Oral Maxillofac Surg ; 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36171302

ABSTRACT

PURPOSE: This systematic review aimed to determine whether differences in the macro-geometry of titanium implants promote changes in osseointegration. MATERIAL AND METHOD: SCOPUS, PubMed/Medline, Web of Science, and EMBASE databases were searched in June 2021. In addition, it was performed a manual search of the reference lists of the included articles. Eligibility criteria were in vivo studies that addressed the effect of titanium implant macro-geometry on osseointegration, studies that evaluated periodontally healthy models, and papers indexed in Journal Citation Reports. RESULTS: The database search resulted in 1037 articles. Of the 19 articles selected for full reading, 16 remained in this systematic review. These had a high heterogeneity making it hard to perform statistical analysis of the data, so a descriptive analysis was performed. CONCLUSIONS: Based on the studies included in this systematic review, implant macro-geometry provides influences on osseointegration. In this sense, the various isolated characteristics (thread type, thread pitch, thread depth, face angle) should be studied so that the implant geometry can balance the compressive stress and tensile stress and produce a minimum shear force.

10.
Cranio ; : 1-11, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35703499

ABSTRACT

OBJECTIVE: To critically evaluate the literature and answer the question, "How effective is photobiomodulation treatment on pain control in patients with TMJ disorder?". METHODS: PRISMA, PubMed, Web of Science, Scopus, and Embase databases were used for the personalized search strategy. For risk of bias, Rob 2.0 for randomized clinical trials and ROBINS-I for non-randomized clinical trials were used. RESULTS: Eighty-four articles were found and, after removing duplicates, seventy one studies were included for titles and abstracts. For a full reading, 30 articles were selected and, according to the eligibility criteria, 24 remained for qualitative analysis. The studies showed a low risk of bias. Due to the heterogeneity of the studies, it was not possible to perform a meta-analysis. CONCLUSION: Photobiomodulation is an effective adjunct for the treatment of temporomandibular disorders, being a less invasive approach, safe, low-cost, and without side effects.

11.
Dent Mater ; 38(6): e174-e180, 2022 06.
Article in English | MEDLINE | ID: mdl-35525686

ABSTRACT

OBJECTIVE: To explore the effect of adding different percentages of nanostructured silver vanadate decorated with silver nanoparticles (ß-AgVO3) to dental porcelains, evaluating the antimicrobial activity and the influence on the mechanical properties. METHODS: Thirty-six specimens were made, for each concentration, control group, 0.5%, 1%, 2.5% and 5%, using two commercial brands: IPS InLine and Noritake Cerabien ZR. For the analysis of mechanical properties, the Vickers microhardness test and the roughness test were performed. For the antimicrobial analysis, the XTT and CFU assays were performed. RESULTS: There was a statistically significant difference between groups for mechanical and microbiological analyses. SIGNIFICANCE: The modification of dental porcelains, with the incorporation of ß-AgVO3, influenced the mechanical properties of the material and demonstrated antimicrobial activity at certain concentrations.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Nanostructures , Anti-Infective Agents/pharmacology , Dental Porcelain , Materials Testing , Silver/pharmacology , Surface Properties
12.
Heliyon ; 8(12): e12505, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36643331

ABSTRACT

Objective: Critically analyzed the existing literature to answer the question "What is the influence of roughness of surfaces for dental implants obtained by additive manufacturing compared to machined on osteoblastic cell adhesion and proliferation?" Design: This systematic review followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and was registered in the Open Science Framework. The personalized search strategy was applied to Embase, Pub Med, Scopus, and Science Direct databases and Google Scholar and ProQuest grey literature. The selection process was carried out in two stages independently by two reviewers according to the eligibility criteria. The risk of bias was analyzed using a checklist of important parameters to be considered. Results: When applying the search strategy on databases 223 articles were found, after removing the duplicates, 171 were analyzed by title and abstract of which 25 were selected for full reading, of these, 6 met the eligibility criteria. 2 studies were included from the reference list totaling 8 articles included in this systematic review and none were included from the Grey Literature. 7 had a low risk of bias and 1 moderate. Conclusions: 1) Roughness is a property that must be analyzed and correlated with the chemical composition, intrinsic to the alloy and resulting from the surface treatment; morphology of topographic peaks and valleys; printing technique and its parameters; 2) Need for more studies on the biomolecular level to elucidate the mechanism by which the roughness and the morphology of topographical peaks and valleys descriptive of roughness influence osteoblastic adhesion and proliferation.

13.
J Chem Inf Model ; 61(7): 3615-3624, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34251211

ABSTRACT

The use of mesoscopic models to describe the thermodynamic properties of locked nucleic acid (LNA)-modified nucleotides can provide useful insights into their properties, such as hydrogen-bonding and stacking interactions. In addition, the mesoscopic parameters can be used to optimize LNA insertion in probes, to achieve accurate melting temperature predictions, and to obtain duplex opening profiles at the base-pair level. Here, we applied this type of model to parameterize a large set of melting temperatures for LNA-modified sequences, from published sources, covering all possible nearest-neighbor configurations. We have found a very large increase in Morse potentials, which indicates very strong hydrogen bonding as the main cause of improved LNA thermodynamic stability. LNA-modified adenine-thymine (AT) was found to have similar hydrogen bonding to unmodified cytosine-guanine (CG) base pairs, while for LNA CG, we found exceptionally large hydrogen bonding. In contrast, stacking interactions, which were thought to be behind the stability of LNA, were similar to unmodified DNA in most cases. We applied the new LNA parameters to the design of BRAF, KRAS, and EGFR oncogene variants by testing all possible LNA modifications. Selected sequences were then synthesized and had their hybridization temperatures measured, achieving a prediction accuracy within 1 °C. We performed a detailed base-pair opening analysis to discuss specific aspects of these probe hybridizations that may be relevant for probe design.


Subject(s)
DNA , Oligonucleotides , Nucleic Acid Conformation , Nucleic Acid Hybridization , Oncogenes , Thermodynamics
14.
Biophys Chem ; 271: 106551, 2021 04.
Article in English | MEDLINE | ID: mdl-33662903

ABSTRACT

Mesoscopic models can be used for the description of the thermodynamic properties of RNA duplexes. With the use of experimental melting temperatures, its parametrization can provide important insights into its hydrogen bonds and stacking interactions as has been done for high sodium concentrations. However, the RNA parametrization for lower salt concentrations is still missing due to the limited amount of published melting temperature data. While the Peyrard-Bishop (PB) parametrization was found to be largely independent of strand concentrations, it requires that all temperatures are provided at the same strand concentrations. Here we adapted the PB model to handle multiple strand concentrations and in this way we were able to make use of an experimental set of temperatures to model the hydrogen bond and stacking interactions at low and intermediate sodium concentrations. For the parametrizations we make a distinction between terminal and internal base pairs, and the resulting potentials were qualitatively similar as we obtained previously for DNA. The main difference from DNA parameters, was the Morse potentials at low sodium concentrations for terminal r(AU) which is stronger than d(AT), suggesting higher hydrogen bond strength.


Subject(s)
Models, Chemical , RNA/chemistry , Sodium Chloride/chemistry , Hydrogen Bonding , Salts/chemistry , Thermodynamics
15.
Antibiotics (Basel) ; 10(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498278

ABSTRACT

Biofilm formation on biomaterials is a challenge in the health area. Antimicrobial substances based on nanomaterials have been proposed to solve this problem. The aim was to incorporate nanostructured silver vanadate decorated with silver nanoparticles (ß-AgVO3) into dental porcelains (IPS Inline and Ex-3 Noritake), at concentrations of 2.5% and 5%, and evaluate the surface characteristics (by SEM/EDS), antimicrobial activity (against Streptococcus mutans, Streptococcus sobrinus, Aggregatibacter actinomycetemcomitans, and Pseudomonas aeruginosa), silver (Ag+) and vanadium (V4+/V5+) ions release, and mechanical properties (microhardness, roughness, and fracture toughness). The ß-AgVO3 incorporation did not alter the porcelain's components, reduced the S. mutans, S. sobrinus and A. actinomycetemcomitans viability, increased the fracture toughness of IPS Inline, the roughness for all groups, and did not affect the microhardness of the 5% group. Among all groups, IPS Inline 5% released more Ag+, and Ex-3 Noritake 2.5% released more V4+/V5+. It was concluded that the incorporation of ß-AgVO3 into dental porcelains promoted antimicrobial activity against S. mutans, S. sobrinus, and A. actinomycetemcomitans (preventing biofilm formation), caused a higher release of vanadium than silver ions, and an adequate mechanical behavior was observed. However, the incorporation of ß-AgVO3 did not reduce P. aeruginosa viability and increased the surface roughness of dental porcelains.

16.
J Prosthet Dent ; 123(3): 529.e1-529.e5, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31952862

ABSTRACT

STATEMENT OF PROBLEM: Dental porcelain restorations are subject to biological failures related to secondary caries and periodontal disease leading to prosthesis replacement. PURPOSE: The purpose of this in vitro study was to explore the microbiological and mechanical properties of dental porcelain incorporated with different percentages of silver vanadate (ß-AgVO3) through microbiological analysis, roughness tests, and the Vickers microhardness test. MATERIAL AND METHODS: IPS InLine porcelain specimens were made by using a cylindrical Teflon matrix in the dimensions of 8×2 mm. For the control group, the porcelain was manipulated according to the manufacturer's instructions. The groups incorporating the nanomaterial were prepared with 2.5%, 5%, and 10% of ß-AgVO3, which was added proportionally by mass to the porcelain powder. In vitro microbiologic analysis, roughness tests, and the Vickers microhardness test were performed. RESULTS: Against Streptococcus mutans, the control group showed no inhibition halo (0 mm). All groups with AgVO3 showed a zone of inhibition, the highest for the group with 10% (30 mm) and then the groups with 2.5% (9 mm) and 5% (17 mm). For Vickers microhardness, no statistically significant difference (P<.05) was observed between the evaluated groups. The group with 10% of AgVO3 had the highest mean roughness and was statistically different (P<.001) from the other groups. CONCLUSIONS: Adding ß-AgVO3 to dental porcelain demonstrated antimicrobial effectiveness at all concentrations (2.5%, 5%, and 10%), with no effect on Vickers microhardness. The 10% group had higher roughness than the other groups.


Subject(s)
Dental Porcelain , Nanostructures , Materials Testing , Silver , Streptococcus mutans , Surface Properties
17.
Chem Phys ; 521: 69-76, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31598030

ABSTRACT

We calculate the nearest-neighbour enthalpies and entropies at 5 salt concentrations of 18 RNA sequences, each for at least 9 different species concentrations, totalling 757 melting temperatures, using a melting temperature optimization method. These new parameters do not need to be salt-corrected and are shown to provide overall improved melting temperature predictions. They show a marked quadratic dependence with salt concentrations which are compensated to form linear Gibbs free energies. Two different parameter schemes were tested, with fixed or variable initial parameters. We have found that using variable initial parameters provides better predictive results than using salt correction factors and that the prediction uncertainty is considerably reduced for a validation set of independent sequences. An interpolation scheme is introduced to generate model parameters for arbitrary salt concentrations which performs better against a validation set than predictions using salt corrections.

18.
J Chem Phys ; 143(17): 175101, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26547181

ABSTRACT

DNA base pairs are known to open more easily at the helix terminal, a process usually called end fraying, the details of which are still poorly understood. Here, we present a mesoscopic model calculation based on available experimental data where we consider separately the terminal base pairs of a DNA duplex. Our results show an important reduction of hydrogen bond strength for terminal cytosine-guanine (CG) base pairs which is uniform over the whole range of salt concentrations, while for AT base pairs, we obtain a nearly 1/3 reduction but only at low salt concentrations. At higher salt concentrations, terminal adenine-thymine (AT) pair has almost the same hydrogen bond strength than interior bases. The calculated terminal stacking interaction parameters display some peculiarly contrasting behavior. While there is mostly no perceptible difference to internal stacking, for some cases, we observe an unusually strong dependence with salt concentration which does not appear follow any pattern or trend.


Subject(s)
Adenine/chemistry , DNA/chemistry , Salts/chemistry , Thymine/chemistry , Base Pairing , Hydrogen Bonding
SELECTION OF CITATIONS
SEARCH DETAIL
...