Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
J Mol Neurosci ; 67(3): 441-444, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30607898

ABSTRACT

Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by symmetrical and bilateral brain calcification. It is typically inherited as an autosomal dominant disorder, and de novo variants have also been described. Interestingly, just recent studies have reported the first autosomal recessive PFBC-causative gene. PFBC patients exhibit high clinical heterogeneity including Parkinsonism, dystonia, ataxia, depression, and migraine. Mice studies, an important research tool, have been a breakthrough in increasing the understanding of PFBC's main signs and symptoms, and many findings reported in these mice have been subsequently reported in patients. One phenotype that has been observed in PFBC mice models but not in PFBC patients, however, is the development of ophthalmic abnormalities. This way, this report focused on performing an ophthalmic assessment in six Brazilian patients genetically diagnosed with PFBC. The assessments showed that none of the PFBC individuals included presented any of the ophthalmic abnormalities reported in mice models, such as cataracts, ocular calcification, abnormal iris and lens morphology, and retinal deterioration. Additionally, of the six PFBC patients described, two SLC20A2 mutation carriers showed physiological excavation of the optic nerve head and partial vitreous detachment, while just one individual presented bilateral narrowing of retinal arterioles. In summary, no evidence of similar ophthalmological abnormalities found in mice were found in our patients; nonetheless, further studies in larger sample size are warranted to corroborate with our findings. To our knowledge, this study is the first to focus on investigating, in PFBC patients, the ophthalmological phenotypes described in the PFBC mice models.


Subject(s)
Brain/metabolism , Calcinosis/genetics , Eye Diseases/genetics , Proto-Oncogene Proteins c-sis/genetics , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Animals , Brain/pathology , Calcinosis/pathology , Eye Diseases/pathology , Humans , Mice
3.
Rev. Soc. Bras. Med. Trop ; 50(6): 764-768, Nov.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-897038

ABSTRACT

Abstract INTRODUCTION: Pseudomonas aeruginosa, an important pathogen globally, presents several resistance mechanisms. This study aimed to investigate the presence of bla GES in clinical isolates of Pseudomonas aeruginosa obtained from various clinical specimens from patients admitted to three different hospitals in Recife, Brazil. The Guiana extended spectrum beta-lactamase (GES) enzymes are responsible for conferring broad spectrum resistance to beta-lactam drugs, including the carbapenems. METHODS: A total of 100 carbapenem-resistant P. aeruginosa isolates underwent polymerase chain reaction (PCR) testing to identify bla GES, bla KPC, bla SPM-1, bla IMP, and bla VIM. Additionally, PCR products positive for bla GES were sequenced. The clonal profiles of these same isolates were then determined by means of enterobacterial repetitive intergenic consensus (ERIC)-PCR analysis. RESULTS: PCR analysis revealed that four isolates harbored bla GES; DNA sequencing showed that two harbored bla GES-1 and two bla GES-11. Beta-lactamase genes bla SPM-1, bla IMP, bla VIM, and bla KPC were investigated; none of these genes was detected. Automated susceptibility testing methods (Vitek®2, bioMérieux) showed that the bla GES-1-positive isolates were only susceptible to polymyxin B. The patterns obtained with ERIC-PCR methods showed clonal relationship between the two isolates that harbored bla GES-11, whereas different clonal profiles were found in the isolates harboring bla GES-1. CONCLUSIONS: We detected the presence of bacterial isolates positive for two different variants of the enzyme GES in three different hospitals from Recife, Brazil. These enzymes have a great capacity for dissemination among Gram-negative bacteria and confer broad-spectrum resistance to beta-lactam antibiotics and to the carbapenems.


Subject(s)
Humans , Pseudomonas aeruginosa/genetics , beta-Lactamases/genetics , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , beta-Lactamases/drug effects , Brazil , Base Sequence , Microbial Sensitivity Tests , Polymerase Chain Reaction , Sequence Analysis, DNA , Drug Resistance, Multiple, Bacterial/drug effects
5.
Rev Soc Bras Med Trop ; 50(6): 764-768, 2017.
Article in English | MEDLINE | ID: mdl-29340452

ABSTRACT

INTRODUCTION: Pseudomonas aeruginosa, an important pathogen globally, presents several resistance mechanisms. This study aimed to investigate the presence of bla GES in clinical isolates of Pseudomonas aeruginosa obtained from various clinical specimens from patients admitted to three different hospitals in Recife, Brazil. The Guiana extended spectrum beta-lactamase (GES) enzymes are responsible for conferring broad spectrum resistance to beta-lactam drugs, including the carbapenems. METHODS: A total of 100 carbapenem-resistant P. aeruginosa isolates underwent polymerase chain reaction (PCR) testing to identify bla GES, bla KPC, bla SPM-1, bla IMP, and bla VIM. Additionally, PCR products positive for bla GES were sequenced. The clonal profiles of these same isolates were then determined by means of enterobacterial repetitive intergenic consensus (ERIC)-PCR analysis. RESULTS: PCR analysis revealed that four isolates harbored bla GES; DNA sequencing showed that two harbored bla GES-1 and two bla GES-11. Beta-lactamase genes bla SPM-1, bla IMP, bla VIM, and bla KPC were investigated; none of these genes was detected. Automated susceptibility testing methods (Vitek®2, bioMérieux) showed that the bla GES-1-positive isolates were only susceptible to polymyxin B. The patterns obtained with ERIC-PCR methods showed clonal relationship between the two isolates that harbored bla GES-11, whereas different clonal profiles were found in the isolates harboring bla GES-1. CONCLUSIONS: We detected the presence of bacterial isolates positive for two different variants of the enzyme GES in three different hospitals from Recife, Brazil. These enzymes have a great capacity for dissemination among Gram-negative bacteria and confer broad-spectrum resistance to beta-lactam antibiotics and to the carbapenems.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Pseudomonas aeruginosa/genetics , beta-Lactamases/genetics , Base Sequence , Brazil , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Microbial Sensitivity Tests , Polymerase Chain Reaction , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Sequence Analysis, DNA , beta-Lactamases/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...