Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 9(9): 2951-2961, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31292157

ABSTRACT

Light is an important stimulus for fungi as it regulates many diverse and important biological processes. Metarhizium acridum is an entomopathogenic fungus currently used for the biological control of insect pests. The success of this approach is heavily dependent on tolerance to environmental stresses. It was previously reported that light exposure increases tolerance to ultraviolet radiation in M. acridum There is no information in the literature about how light globally influences gene expression in this fungus. We employed a combination of mRNA-Sequencing and high-throughput proteomics to study how light regulates gene expression both transcriptionally and post-transcriptionally. Mycelium was exposed to light for 5 min and changes at the mRNA and protein levels were followed in time-course experiments for two and four hours, respectively. After light exposure, changes in mRNA abundance were observed for as much as 1128 genes or 11.3% of the genome. However, only 57 proteins changed in abundance and at least 347 significant changes at the mRNA level were not translated to the protein level. We observed that light downregulated subunits of the eukaryotic translation initiation factor 3, the eIF5A-activating enzyme deoxyhypusine hydroxylase, and ribosomal proteins. We hypothesize that light is perceived as a stress by the cell that responds to it by reducing translational activity. Overall, our results indicate that light acts both as a signal and a stressor to M. acridum and highlight the importance of measuring protein levels in order to fully understand light responses in fungi.


Subject(s)
Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Metarhizium/genetics , Fungal Proteins/metabolism , High-Throughput Nucleotide Sequencing , Light , Metarhizium/physiology , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mycelium/physiology , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Proteomics/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Stress, Physiological , Tandem Mass Spectrometry/methods , Transcriptome , Eukaryotic Translation Initiation Factor 5A
2.
BMC Microbiol ; 10: 12, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20078882

ABSTRACT

BACKGROUND: Calcineurin, a serine/threonine-specific protein phosphatase, plays an important role in the control of cell morphology and virulence in fungi. Calcineurin regulates localization and activity of a transcription factor called CRZ1. Recently, we characterize Aspergillus fumigatus CRZ1 homologue, AfCrzA. Here, we investigate which pathways are influenced by A. fumigatus AfCrzA during a short pulse of calcium by comparatively determining the transcriptional profile of A. fumigatus wild type and DeltaAfcrzA mutant strains. RESULTS: We were able to observe 3,622 genes modulated in at least one timepoint in the mutant when compared to the wild type strain (3,211 and 411 at 10 and 30 minutes, respectively). Decreased mRNA abundance in the DeltacrzA was seen for genes encoding calcium transporters, transcription factors and genes that could be directly or indirectly involved in calcium metabolism. Increased mRNA accumulation was observed for some genes encoding proteins involved in stress response. AfCrzA overexpression in A. fumigatus increases the expression of several of these genes. The deleted strain of one of these genes, AfRcnA, belonging to a class of endogenous calcineurin regulators, calcipressins, had more calcineurin activity after exposure to calcium and was less sensitive to menadione 30 microM, hydrogen peroxide 2.5 mM, EGTA 25 mM, and MnCl2 25 mM. We constructed deletion, overexpression, and GFP fusion protein for the closely related A. nidulans AnRcnA. GFP::RcnA was mostly detected along the germling, did not accumulate in the nuclei and its location is not affected by the cellular response to calcium chloride. CONCLUSION: We have performed a transcriptional profiling analysis of the A. fumigatus DeltaAfcrzA mutant strain exposed to calcium stress. This provided an excellent opportunity to identify genes and pathways that are under the influence of AfCrzA. AfRcnA, one of these selected genes, encodes a modulator of calcineurin activity. Concomitantly with A. fumigatus AfrcnA molecular analysis, we decided to exploit the conserved features of A. nidulans calcineurin system and investigated the A. nidulans AnRcnA homologue. A. nidulans AnRcnA mutation is suppressing CnaA mutation and it is responsible for modulating the calcineurin activity and mRNA accumulation of genes encoding calcium transporters.


Subject(s)
Aspergillus fumigatus/genetics , Calcineurin/metabolism , Fungal Proteins/metabolism , Transcription Factors/metabolism , Aspergillus fumigatus/metabolism , Calcium/metabolism , Fungal Proteins/genetics , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Fungal , Mutation , Oligonucleotide Array Sequence Analysis , RNA, Fungal/metabolism , RNA, Messenger/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL