Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Acta Biomater ; 173: 261-282, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37866725

ABSTRACT

In view of inevitable recurrences despite resection, glioblastoma (GB) is still an unmet clinical need. Dealing with the stromal-cell derived factor 1-alpha (SDF-1α)/CXCR4 axis as a hallmark of infiltrative GB tumors and with the resection cavity situation, the present study described the effects and relevance of a new engineered micro-nanostructured SF-HA-Hep aerogel sponges, made of silk fibroin (SF), hyaluronic acid (HA) and heparin (Hep) and loaded with SDF-1α, to interfere with the GB ecosystem and residual GB cells, attracting and confining them in a controlled area before elimination. 70 µm-pore sponges were designed as an implantable scaffold to trap GB cells. They presented shape memory and fit brain cavities. Histological results after implantation in brain immunocompetent Fischer rats revealed that SF-HA-Hep sponges are well tolerated for more than 3 months while moderately and reversibly colonized by immuno-inflammatory cells. The use of human U87MG GB cells overexpressing the CXCR4 receptor (U87MG-CXCR4+) and responding to SDF-1α allowed demonstrating directional GB cell attraction and colonization of the device in vitro and in vivo in orthotopic resection cavities in Nude rats. Not modifying global survival, aerogel sponge implantation strongly shaped U87MG-CXCR4+ tumors in cavities in contrast to random infiltrative growth in controls. Overall, those results support the interest of SF-HA-Hep sponges as modifiers of the GB ecosystem dynamics acting as "cell meeting rooms" and biocompatible niches whose properties deserve to be considered toward the development of new clinical procedures. STATEMENT OF SIGNIFICANCE: Brain tumor glioblastoma (GB) is one of the worst unmet clinical needs. To prevent the relapse in the resection cavity situation, new implantable biopolymer aerogel sponges loaded with a chemoattractant molecule were designed and preclinically tested as a prototype targeting the interaction between the initial tumor location and its attraction by the peritumoral environment. While not modifying global survival, biocompatible SDF1-loaded hyaluronic acid and silk fibroin sponges induce directional GB cell attraction and colonization in vitro and in rats in vivo. Interestingly, they strongly shaped GB tumors in contrast to random infiltrative growth in controls. These results provide original findings on application of exogenous engineered niches that shape tumors and serve as cell meeting rooms for further clinical developments.


Subject(s)
Brain Neoplasms , Fibroins , Glioblastoma , Rats , Humans , Animals , Chemokine CXCL12/pharmacology , Fibroins/pharmacology , Hyaluronic Acid/pharmacology , Ecosystem , Neoplasm Recurrence, Local , Brain Neoplasms/surgery , Receptors, CXCR4
2.
Front Neuroinform ; 17: 1202156, 2023.
Article in English | MEDLINE | ID: mdl-37593674

ABSTRACT

Introduction: Dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion studies in magnetic resonance imaging (MRI) provide valuable data for studying vascular cerebral pathophysiology in different rodent models of brain diseases (stroke, tumor grading, and neurodegenerative models). The extraction of these hemodynamic parameters via DSC-MRI is based on tracer kinetic modeling, which can be solved using deconvolution-based methods, among others. Most of the post-processing software used in preclinical studies is home-built and custom-designed. Its use being, in most cases, limited to the institution responsible for the development. In this study, we designed a tool that performs the hemodynamic quantification process quickly and in a reliable way for research purposes. Methods: The DSC-MRI quantification tool, developed as a Python project, performs the basic mathematical steps to generate the parametric maps: cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), signal recovery (SR), and percentage signal recovery (PSR). For the validation process, a data set composed of MRI rat brain scans was evaluated: i) healthy animals, ii) temporal blood-brain barrier (BBB) dysfunction, iii) cerebral chronic hypoperfusion (CCH), iv) ischemic stroke, and v) glioblastoma multiforme (GBM) models. The resulting perfusion parameters were then compared with data retrieved from the literature. Results: A total of 30 animals were evaluated with our DSC-MRI quantification tool. In all the models, the hemodynamic parameters reported from the literature are reproduced and they are in the same range as our results. The Bland-Altman plot used to describe the agreement between our perfusion quantitative analyses and literature data regarding healthy rats, stroke, and GBM models, determined that the agreement for CBV and MTT is higher than for CBF. Conclusion: An open-source, Python-based DSC post-processing software package that performs key quantitative perfusion parameters has been developed. Regarding the different animal models used, the results obtained are consistent and in good agreement with the physiological patterns and values reported in the literature. Our development has been built in a modular framework to allow code customization or the addition of alternative algorithms not yet implemented.

3.
Biomedicines ; 11(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37509494

ABSTRACT

Nanotechnology application in cancer treatment is promising and is likely to quickly spread worldwide in the near future. To date, most scientific studies on nanomaterial development have focused on deepening the attitudes of end users and experts, leaving clinical practice implications unexplored. Neuro-oncology might be a promising field for the application of nanotechnologies, especially for malignant brain tumors with a low-survival rate such as glioblastoma (GBM). As to improving patients' quality of life and life expectancy, innovative treatments are worth being explored. Indeed, it is important to explore clinicians' intention to use experimental technologies in clinical practice. In the present study, we conducted an exploratory review of the literature about healthcare workers' knowledge and personal opinions toward nanomedicine. Our search (i) gives evidence for disagreement between self-reported and factual knowledge about nanomedicine and (ii) suggests the internet and television as main sources of information about current trends in nanomedicine applications, over scientific journals and formal education. Current models of risk assessment suggest time-saving cognitive and affective shortcuts, i.e., heuristics support both laypeople and experts in the decision-making process under uncertainty, whereas they might be a source of error. Whether the knowledge is poor, heuristics are more likely to occur and thus clinicians' opinions and perspectives toward new technologies might be biased.

4.
Biomedicines ; 11(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36830940

ABSTRACT

The two most developed biomarkers in liquid biopsy (LB)-circulating tumor cells and circulating tumor DNA-have been joined by the analysis of extracellular vesicles (EVs). EVs are lipid-bilayer enclosed structures released by all cell types containing a variety of molecules, including DNA, mRNA and miRNA. However, fast, efficient and a high degree of purity isolation technologies are necessary for their clinical routine implementation. In this work, the use of ExoGAG, a new easy-to-use EV isolation technology, was validated for the isolation of EVs from plasma and urine samples. After demonstrating its efficiency, an analysis of the genetic material contained in the EVs was carried out. Firstly, the sensitivity of the detection of point mutations in DNA from plasma EVs isolated by ExoGAG was analyzed. Then, a pilot study of mRNA expression using the nCounter NanoString platform in EV-mRNA from a healthy donor, a benign prostate hyperplasia patient and metastatic prostate cancer patient plasma and urine samples was performed, identifying the prostate cancer pathway as one of the main ones. This work provides evidence for the value of using ExoGAG for the isolation of EVs from plasma and urine samples, enabling downstream applications of the analysis of their genetic cargo.

5.
Sci Rep ; 11(1): 23231, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34853364

ABSTRACT

Homing of circulating tumour cells (CTC) at distant sites represents a critical event in metastasis dissemination. In addition to physical entrapment, probably responsible of the majority of the homing events, the vascular system provides with geometrical factors that govern the flow biomechanics and impact on the fate of the CTC. Here we mathematically explored the distribution of velocities and the corresponding streamlines at the bifurcations of large blood vessel and characterized an area of low-velocity at the carina of bifurcation that favours the residence of CTC. In addition to this fluid physics effect, the adhesive capabilities of the CTC provide with a biological competitive advantage resulting in a marginal but systematic arrest as evidenced by dynamic in vitro recirculation in Y-microchannels and by perfusion in in vivo mice models. Our results also demonstrate that viscosity, as a main determinant of the Reynolds number that define flow biomechanics, may be modulated to limit or impair CTC accumulation at the bifurcation of blood vessels, in agreement with the apparent positive effect observed in the clinical setting by anticoagulants in advanced oncology disease.


Subject(s)
Blood Flow Velocity , Hemodynamics , Neoplastic Cells, Circulating , Animals , Cell Adhesion , Cell Line, Tumor , Human Umbilical Vein Endothelial Cells , Humans , Leukocytes, Mononuclear , Mice , Models, Cardiovascular , Models, Theoretical
7.
Dis Model Mech ; 13(6)2020 06 17.
Article in English | MEDLINE | ID: mdl-32764154

ABSTRACT

Metastasis is facilitated by the formation of pre-metastatic niches through the remodelling of the extracellular matrix (ECM) promoted by haematopoietic and stromal cells. The impact of these primed sites is pronounced for intraperitoneal metastases, where the cavity-exposed ECM supports the attachment of the disseminating tumour cells. Likewise, implantation of biomaterial scaffolds influences metastatic progression systemically through a foreign body reaction (FBR). In this study, we integrated the concept of creating an artificial niche to capture tumour cells actively disseminating in the peritoneal cavity with a therapeutic strategy modulating the interactions of metastatic cells with the ECM. The aim was to transform a disseminated disease into a focal disease. For this, we designed and developed a 'biomimetic' ECM composed of a nonresorbable three-dimensional scaffold with collagen coating and characterized the FBR to the implanted biomaterial. We also analysed the safety of the implanted devices and their ability to capture tumour cells in different murine preclinical models of advanced ovarian cancer. Implantation of the biomimetic devices resulted in an initial inflammatory reaction that transformed progressively into a fibrous connective tissue response. The adhesive capabilities of the scaffold were improved with the ancillary effect of the FBR and showed clinical utility in terms of the efficacy of capture of tumour cells, disease focalization and survival benefit. These results demonstrated the performance and safety of this 'biomimetic' ECM in preclinical models of advanced ovarian cancer. Translated into the clinical setting, this new therapeutic strategy represents the possibility for control of peritoneal carcinomatosis upon primary ovarian debulking surgery and to expand the percentage of patients who are candidates for second rescue surgeries at the time of relapse.


Subject(s)
Biomimetic Materials , Biomimetics/instrumentation , Cell Adhesion , Extracellular Matrix/pathology , Foreign-Body Migration/pathology , Ovarian Neoplasms/therapy , Peritoneal Neoplasms/prevention & control , Tissue Scaffolds , Animals , Cell Line, Tumor , Extracellular Matrix/metabolism , Female , Foreign-Body Migration/metabolism , Humans , Mice, SCID , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Peritoneal Neoplasms/metabolism , Peritoneal Neoplasms/secondary , Time Factors , Tumor Microenvironment , Xenograft Model Antitumor Assays
8.
Cells ; 9(5)2020 05 14.
Article in English | MEDLINE | ID: mdl-32423054

ABSTRACT

BACKGROUND: Recent studies showed a relevant role of hematogenous spread in ovarian cancer and the interest of circulating tumor cells (CTCs) monitoring as a prognosis marker. The aim of the present study was the characterization of CTCs from ovarian cancer patients, paying special attention to cell plasticity characteristics to better understand the biology of these cells. METHODS: CTCs isolation was carried out in 38 patients with advanced high-grade serous ovarian cancer using in parallel CellSearch and an alternative EpCAM-based immunoisolation followed by RT-qPCR analysis to characterize these cells. RESULTS: Epithelial CTCs were found in 21% of patients, being their presence higher in patients with extraperitoneal metastasis. Importantly, this population was characterized by the expression of epithelial markers as MUC1 and CK19, but also by genes associated with mesenchymal and more malignant features as TIMP1, CXCR4 and the stem markers CD24 and CD44. In addition, we evidenced the relevance of TIMP1 expression to promote tumor proliferation, suggesting its interest as a therapeutic target. CONCLUSIONS: Overall, we evidenced the utility of the molecular characterization of EpCAM+ CTCs from advanced ovarian cancer patients to identify biomarkers with potential applicability for disseminated disease detection and as therapeutic targets such as TIMP1.


Subject(s)
Molecular Targeted Therapy , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/enzymology , Tissue Inhibitor of Metalloproteinase-1/metabolism , Adult , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Cell Plasticity , Cell Proliferation , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Middle Aged , Neoplasm Invasiveness , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Xenograft Model Antitumor Assays , Young Adult , Zebrafish
9.
J Clin Med ; 9(2)2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32098121

ABSTRACT

The incidence and mortality of endometrial cancer (EC) have risen in recent years, hence more precise management is needed. Therefore, we combined different types of liquid biopsies to better characterize the genetic landscape of EC in a non-invasive and dynamic manner. Uterine aspirates (UAs) from 60 patients with EC were obtained during surgery and analyzed by next-generation sequencing (NGS). Blood samples, collected at surgery, were used for cell-free DNA (cfDNA) and circulating tumor cell (CTC) analyses. Finally, personalized therapies were tested in patient-derived xenografts (PDXs) generated from the UAs. NGS analyses revealed the presence of genetic alterations in 93% of the tumors. Circulating tumor DNA (ctDNA) was present in 41.2% of cases, mainly in patients with high-risk tumors, thus indicating a clear association with a more aggressive disease. Accordingly, the results obtained during the post-surgery follow-up indicated the presence of ctDNA in three patients with progressive disease. Moreover, 38.9% of patients were positive for CTCs at surgery. Finally, the efficacy of targeted therapies based on the UA-specific mutational landscape was demonstrated in PDX models. Our study indicates the potential clinical applicability of a personalized strategy based on a combination of different liquid biopsies to characterize and monitor tumor evolution, and to identify targeted therapies.

10.
Nat Commun ; 10(1): 4731, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31636264

ABSTRACT

Compounds with specific cytotoxic activity in senescent cells, or senolytics, support the causal involvement of senescence in aging and offer therapeutic interventions. Here we report the identification of Cardiac Glycosides (CGs) as a family of compounds with senolytic activity. CGs, by targeting the Na+/K+ATPase pump, cause a disbalanced electrochemical gradient within the cell causing depolarization and acidification. Senescent cells present a slightly depolarized plasma membrane and higher concentrations of H+, making them more susceptible to the action of CGs. These vulnerabilities can be exploited for therapeutic purposes as evidenced by the in vivo eradication of tumors xenografted in mice after treatment with the combination of a senogenic and a senolytic drug. The senolytic effect of CGs is also effective in the elimination of senescence-induced lung fibrosis. This experimental approach allows the identification of compounds with senolytic activity that could potentially be used to develop effective treatments against age-related diseases.


Subject(s)
Apoptosis/drug effects , Cardiac Glycosides/pharmacology , Cellular Senescence/drug effects , Chondrocytes/drug effects , Fibroblasts/drug effects , A549 Cells , Animals , Antibiotics, Antineoplastic/pharmacology , Bleomycin/pharmacology , Breast Neoplasms , Cell Line, Tumor , Cell Membrane/drug effects , Digoxin/pharmacology , Female , Humans , Hydrogen-Ion Concentration/drug effects , Mice , Osteoarthritis , Ouabain/pharmacology , Proscillaridin/pharmacology , Pulmonary Fibrosis , Xenograft Model Antitumor Assays
11.
Stem Cell Reports ; 12(5): 1099-1112, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31056476

ABSTRACT

Induction of pluripotency in somatic cells with defined genetic factors has been successfully used to investigate the mechanisms of disease initiation and progression. Cellular reprogramming and oncogenic transformation share common features; both involve undergoing a dramatic change in cell identity, and immortalization is a key step for cancer progression that enhances reprogramming. However, there are very few examples of complete successful reprogramming of tumor cells. Here we address the effect of expressing an active oncogene, RAS, on the process of reprogramming and found that, while combined expression with reprogramming factors enhanced dedifferentiation, expression within the context of neoplastic transformation impaired reprogramming. RAS induces expression changes that promote loss of cell identity and acquisition of stemness in a paracrine manner and these changes result in reprogramming when combined with reprogramming factors. When cells carry cooperating oncogenic defects, RAS drives cells into an incompatible cellular fate of malignancy.


Subject(s)
Cell Dedifferentiation/genetics , Cell Transformation, Neoplastic/genetics , Cellular Reprogramming/genetics , Embryo, Mammalian/cytology , Fibroblasts/metabolism , ras Proteins/genetics , Animals , Cell Transformation, Neoplastic/metabolism , Cells, Cultured , Fibroblasts/cytology , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice, Transgenic , ras Proteins/metabolism
12.
Int J Dev Biol ; 62(9-10): 637-640, 2018.
Article in English | MEDLINE | ID: mdl-30378388

ABSTRACT

Programmed cell senescence during embryo development is a recently described process that opens a new perspective to understand the senescence response and that adds a new player whose contribution to development needs to be addressed. Identifying developmental syndromes with a root in deregulated programmed cell senescence will undoubtedly reinforce our view of senescence and could provide a new angle to confront disease. One of the structures that was initially reported to undergo cellular senescence is the mesonephros. During E12.5-E14.5, before regression, mesonephric tubules are positive for the most widely used marker of cell senescence, SAßG, and negative for proliferation marker, Ki67, in a p21Cip1-dependent manner. PKD2 is one of the genes defective in autosomal dominant polycystic kidney disease (ADPKD). Inherited mutations in this gene result in cyst formation in adults after a secondary hit. Polycystin-2 (PC2) protein, the product of PKD2 gene expression, inhibits cell cycle progression by inducing p21Cip1, whereas mutated PKD2 results in increased proliferation and defective differentiation of kidney epithelial cells. Here, we addressed the possibility of defective programmed cell senescence as a consequence of Pkd2 deletion in mice. We analyzed embryos for the expression of the senescence marker SAßG, for the proliferative status of mesonephric tubule cells, and for the expression of p21Cip1, without identifying any noticeable deregulation of cell senescence. Our results exclude defective programmed cell senescence upon Pkd2 ablation as an initial event in ADPKD.


Subject(s)
Cellular Senescence , Embryonic Development , TRPP Cation Channels/physiology , Wolffian Ducts/cytology , Animals , Mice , Mice, Knockout , Wolffian Ducts/metabolism
13.
Aging Cell ; 17(5): e12834, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30129215

ABSTRACT

Aging is characterized by a gradual functional decline of tissues with age. Adult stem and progenitor cells are responsible for tissue maintenance, repair, and regeneration, but during aging, this population of cells is decreased or its activity is reduced, compromising tissue integrity and causing pathologies that increase vulnerability, and ultimately lead to death. The causes of stem cell exhaustion during aging are not clear, and whether a reduction in stem cell function is a cause or a consequence of aging remains unresolved. Here, we took advantage of a mouse model of induced adult Sox2+ stem cell depletion to address whether accelerated stem cell depletion can promote premature aging. After a short period of partial repetitive depletion of this adult stem cell population in mice, we observed increased kyphosis and hair graying, and reduced fat mass, all of them signs of premature aging. It is interesting that cellular senescence was identified in kidney after this partial repetitive Sox2+ cell depletion. To confirm these observations, we performed a prolonged protocol of partial repetitive depletion of Sox2+ cells, forcing regeneration from the remaining Sox2+ cells, thereby causing their exhaustion. Senescence specific staining and the analysis of the expression of genetic markers clearly corroborated that adult stem cell exhaustion can lead to cellular senescence induction and premature aging.


Subject(s)
Adult Stem Cells/metabolism , Adult Stem Cells/pathology , Aging, Premature/metabolism , Aging, Premature/pathology , Cellular Senescence , SOXB1 Transcription Factors/metabolism , Animals , Mice
14.
Oncotarget ; 6(5): 2992-3002, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25576924

ABSTRACT

Cellular reprogramming to iPSCs has uncovered unsuspected links between tumor suppressors and pluripotency factors. Using this system, it was possible to identify tumor suppressor p27 as a repressor of Sox2 during differentiation. This led to the demonstration that defects in the repression of Sox2 can contribute to tumor development. The members of the retinoblastoma family of pocket proteins, pRb, p107 and p130, are negative regulators of the cell cycle with tumor suppressor activity and with roles in differentiation. In this work we studied the relative contribution of the retinoblastoma family members to the regulation of Sox2 expression. We found that deletion of Rb or p130 leads to impaired repression of Sox2, a deffect amplified by inactivation of p53. We also identified binding of pRb and p130 to an enhancer with crucial regulatory activity on Sox2 expression. Using cellular reprogramming we tested the impact of the defective repression of Sox2 and confirmed that Rb deficiency allows the generation of iPSCs in the absence of exogenous Sox2. Finally, partial depletion of Sox2 positive cells reduced the pituitary tumor development initiated by Rb loss in vivo. In summary, our results show that Sox2 repression by pRb is a relevant mechanism of tumor suppression.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Retinoblastoma Protein/metabolism , Retinoblastoma-Like Protein p130/metabolism , SOXB1 Transcription Factors/metabolism , Transcription, Genetic , Animals , Cellular Reprogramming , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Genotype , HEK293 Cells , Humans , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Neoplastic Stem Cells/metabolism , Phenotype , Pituitary Neoplasms/genetics , Pituitary Neoplasms/metabolism , RNA Interference , Retinoblastoma Protein/deficiency , Retinoblastoma Protein/genetics , Retinoblastoma-Like Protein p107/genetics , Retinoblastoma-Like Protein p107/metabolism , Retinoblastoma-Like Protein p130/deficiency , Retinoblastoma-Like Protein p130/genetics , SOXB1 Transcription Factors/deficiency , SOXB1 Transcription Factors/genetics , Transfection , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
15.
Cell Cycle ; 14(2): 277-82, 2015.
Article in English | MEDLINE | ID: mdl-25607652

ABSTRACT

Tumor suppressor p53 plays a crucial antiviral role and targeting of p53 by viral proteins is a common mechanism involved in virus oncogenesis. The activity of p53 is tightly regulated at the post-translational levels through a myriad of modifications. Among them, modification of p53 by SUMO has been associated with the onset of cellular senescence. Kaposi´s sarcoma-associated herpesvirus (KSHV) expresses several proteins targeting p53, including the latent protein LANA2 that regulates polyubiquitylation and phosphorylation of p53. Here we show that LANA2 also inhibits the modification of p53 by SUMO2. Furthermore, we show that the reduction of p53-SUMO2 conjugation by LANA2, as well as the p53-LANA2 interaction, both require the SUMOylation of the viral protein and its interaction with SUMO or SUMOylated proteins in a non-covalent manner. Finally, we show that the control of p53-SUMO2 conjugation by LANA2 correlates with its ability to inhibit SUMO2- and type I interferon-induced senescence. These results highlight the importance of p53 SUMOylation in the control of virus infection and suggest that viral oncoproteins could contribute to viral infection and cell transformation by abrogating p53 SUMOylation.


Subject(s)
Antigens, Viral/metabolism , Herpesvirus 8, Human/metabolism , Nuclear Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Viral Proteins/metabolism , Antigens, Viral/genetics , Cell Line, Tumor , HEK293 Cells , Humans , Nuclear Proteins/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Sumoylation , Tumor Suppressor Protein p53/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...