Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Clin Neurophysiol ; 163: 132-142, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733703

ABSTRACT

BACKGROUND: Immune effector cell-associated neurotoxicity syndrome (ICANS) is common after chimeric antigen receptor T-cell (CAR-T) therapy. OBJECTIVE: This study aimed to assess the impact of preinfusion electroencephalography (EEG) abnormalities and EEG findings at ICANS onset for predicting ICANS risk and severity in 56 adult patients with refractory lymphoma undergoing CAR-T therapy. STUDY DESIGN: EEGs were conducted at the time of lymphodepleting chemotherapy and shortly after onset of ICANS. RESULTS: Twenty-eight (50%) patients developed ICANS at a median time of 6 days after CAR-T infusion. Abnormal preinfusion EEG was identified as a risk factor for severe ICANS (50% vs. 17%, P = 0.036). Following ICANS onset, EEG abnormalities were detected in 89% of patients [encephalopathy (n = 19, 70%) and/or interictal epileptiform discharges (IEDs) (n = 14, 52%)]. Importantly, IEDs seemed to be associated with rapid progression to higher grades of ICANS within 24 h. CONCLUSIONS: If confirmed in a large cohort of patients, these findings could establish the basis for modifying current management guidelines, enabling the identification of patients at risk of neurotoxicity, and providing support for preemptive corticosteroid use in patients with both initial grade 1 ICANS and IEDs at neurotoxicity onset, who are at risk of neurological impairment.


Subject(s)
Electroencephalography , Immunotherapy, Adoptive , Neurotoxicity Syndromes , Humans , Male , Female , Middle Aged , Neurotoxicity Syndromes/physiopathology , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/diagnosis , Adult , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Aged , Lymphoma/therapy , Lymphoma/physiopathology , Lymphoma/immunology , Receptors, Chimeric Antigen/immunology , Young Adult
2.
Front Immunol ; 14: 1232472, 2023.
Article in English | MEDLINE | ID: mdl-37767093

ABSTRACT

An unprecedented global social and economic impact as well as a significant number of fatalities have been brought on by the coronavirus disease 2019 (COVID-19), produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Acute SARS-CoV-2 infection can, in certain situations, cause immunological abnormalities, leading to an anomalous innate and adaptive immune response. While most patients only experience mild symptoms and recover without the need for mechanical ventilation, a substantial percentage of those who are affected develop severe respiratory illness, which can be fatal. The absence of effective therapies when disease progresses to a very severe condition coupled with the incomplete understanding of COVID-19's pathogenesis triggers the need to develop innovative therapeutic approaches for patients at high risk of mortality. As a result, we investigate the potential contribution of promising combinatorial cell therapy to prevent death in critical patients.

3.
J Transl Med ; 21(1): 344, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37221624

ABSTRACT

BACKGROUND: As leading contributors to worldwide morbidity and mortality, sepsis and septic shock are considered a major global health concern. Proactive biomarker identification in patients with sepsis suspicion at any time remains a daunting challenge for hospitals. Despite great progress in the understanding of clinical and molecular aspects of sepsis, its definition, diagnosis, and treatment remain challenging, highlighting a need for new biomarkers with potential to improve critically ill patient management. In this study we validate a quantitative mass spectrometry method to measure circulating histone levels in plasma samples for the diagnosis and prognosis of sepsis and septic shock patients. METHODS: We used the mass spectrometry technique of multiple reaction monitoring to quantify circulating histones H2B and H3 in plasma from a monocenter cohort of critically ill patients admitted to an Intensive Care Unit (ICU) and evaluated its performance for the diagnosis and prognosis of sepsis and septic shock (SS). RESULTS: Our results highlight the potential of our test for early diagnosis of sepsis and SS. H2B levels above 121.40 ng/mL (IQR 446.70) were indicative of SS. The value of blood circulating histones to identify a subset of SS patients in a more severe stage with associated organ failure was also tested, revealing circulating levels of histones H2B above 435.61 ng/ml (IQR 2407.10) and H3 above 300.61 ng/ml (IQR 912.77) in septic shock patients with organ failure requiring invasive organ support therapies. Importantly, we found levels of H2B and H3 above 400.44 ng/mL (IQR 1335.54) and 258.25 (IQR 470.44), respectively in those patients who debut with disseminated intravascular coagulation (DIC). Finally, a receiver operating characteristic curve (ROC curve) demonstrated the prognostic value of circulating histone H3 to predict fatal outcomes and found for histone H3 an area under the curve (AUC) of 0.720 (CI 0.546-0.895) p < 0.016 on a positive test cut-off point at 486.84 ng/mL, showing a sensitivity of 66.7% and specificity of 73.9%. CONCLUSIONS: Circulating histones analyzed by MS can be used to diagnose SS and identify patients at high risk of suffering DIC and fatal outcome.


Subject(s)
Sepsis , Shock, Septic , Humans , Histones , Critical Illness , Prognosis , Early Diagnosis , Mass Spectrometry
4.
J Exp Med ; 219(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36112363

ABSTRACT

Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10-5), but not >70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10-5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10-10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old.


Subject(s)
Autoantibodies , Influenza, Human , Interferon Type I , Pneumonia , COVID-19/complications , COVID-19/immunology , Humans , Influenza, Human/complications , Influenza, Human/immunology , Interferon Type I/immunology , Interferon Type I/metabolism , Pneumonia/complications , Pneumonia/immunology , Yellow Fever Vaccine/adverse effects
5.
Sci Rep ; 12(1): 14271, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35995830

ABSTRACT

We examined the relationship between peripheral blood levels of SARS-CoV-2 S (Spike protein)1/M (Membrane protein)-reactive IFN-γ-producing CD4+ and CD8+ T cells, serum levels of biomarkers of clinical severity, and mortality in critically ill COVID-19 patients. The potential association between SARS-CoV-2-S-Receptor Binding Domain (RBD)-specific IgG levels in sera and mortality was also investigated. SARS-CoV-2 T cells and anti-RBD IgG levels were monitored in 71 non-consecutive patients (49 male and 22 female; median age, 65 years) by whole-blood flow cytometry and Enzyme-linked immunosorbent assay (ELISA), respectively (326 specimens). SARS-CoV-2 RNA loads in paired tracheal aspirates [TA] (n = 147) were available from 54 patients. Serum levels of interleukin-6, ferritin, D-Dimer, lactose dehydrogenase and C-reactive protein in paired sera were known. SARS-CoV-2 T cells (either CD4+, CD8+ or both) were detectable in 70 patients. SARS-CoV-2 IFN-γ CD4+ T-cell responses were documented more frequently than their CD8+ counterparts (62 vs. 56 patients) and were of greater magnitude overall. Detectable SARS-CoV-2 S1/M-reactive CD8+ and CD4+ T-cell responses were associated with higher SARS-CoV-2 RNA loads in TA. SARS-CoV-2 RNA load in TA decreased over time, irrespective of the dynamics of SARS-CoV-2-reactive CD8+ and CD4+ T cells. No correlation was found between SARS-CoV-2 IFN-γ T-cell counts, anti-RBD IgG concentrations and biomarker serum levels (Rho ≤ 0.3). The kinetics of both T cell subsets was comparable between those who died or survived, whereas anti-RBD IgG levels were higher across different time points in deceased patients than in survivors. Enumeration of peripheral blood levels of SARS-CoV-2-S1/M-reactive IFN-γ CD4+ and CD8+ T cells does not predict viral clearance from the lower respiratory tract or poor clinical outcomes in critically ill COVID-19 patients. In contrast, anti-RBD IgG levels were directly associated with increased mortality.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Viral , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Critical Illness , Female , Humans , Immunoglobulin G , Male , RNA, Viral
6.
Sci Rep ; 12(1): 8273, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35585163

ABSTRACT

Combined kinetic analysis of plasma SARS-CoV-2 RNAemia, Nucleocapsid (N)-antigenemia and virus-specific antibodies may help ascertain the role of antibodies in preventing virus dissemination in COVID-19 patients. We performed this analysis in a cohort of 71 consecutive critically ill COVID-19 patients (49 male; median age, 65 years) using RT-PCR assay, lateral flow immunochromatography method and receptor binding domain (RBD) and N-based immunoassays. A total of 338 plasma specimens collected at a median of 12 days after symptoms onset were available for analyses. SARS-CoV-2 RNAemia and N-antigenemia were detected in 37 and 43 specimens from 26 (36.5%) and 30 (42.2%) patients, respectively. Free RNA was the main biological form of SARS-CoV-2 found in plasma. The detection rate for both viral components was associated with viral load at the upper respiratory tract. Median time to SARS-CoV-2-RBD antibody detection was 14 days (range, 4-38) from onset of symptoms. Decreasing antibody levels were observed in parallel to increasing levels of both RNAemia and N-antigenemia, yet overall a fairly modest inverse correlation (Rho = -0.35; P < 0.001) was seen between virus RNAemia and SARS-CoV-2-RBD antibody levels. The data cast doubts on a major involvement of antibodies in virus clearance from the bloodstream within the timeframe examined.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Aged , Antibodies, Viral , Critical Illness , Humans , Kinetics , Male , RNA, Viral/analysis
7.
Biomedicines ; 10(3)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35327327

ABSTRACT

(1) Background: Sepsis is a life-threatening condition caused by an abnormal host response to infection that produces altered physiological responses causing tissue damage and can result in organ dysfunction and, in some cases, death. Although sepsis is characterized by a malfunction of the immune system leading to an altered immune response and immunosuppression, the high complexity of the pathophysiology of sepsis requires further investigation to characterize the immune response in sepsis and septic shock. (2) Methods: This study analyzes the immune-related responses occurring during the early stages of sepsis by comparing the amounts of cytokines, immune modulators and other endothelial mediators of a control group and three types of severe patients: critically ill non-septic patients, septic and septic shock patients. (3) Results: We showed that in the early stages of sepsis the innate immune system attempts to counteract infection, probably via neutrophils. Conversely, the adaptive immune system is not yet fully activated, either in septic or in septic shock patients. In addition, immunosuppressive responses and pro-coagulation signals are active in patients with septic shock. (4) Conclusions: The highest levels of IL-6 and pyroptosis-related cytokines (IL-18 and IL-1α) were found in septic shock patients, which correlated with D-dimer. Moreover, endothelial function may be affected as shown by the overexpression of adhesion molecules such as s-ICAM1 and E-Selectin during septic shock.

8.
J Clin Virol ; 148: 105082, 2022 03.
Article in English | MEDLINE | ID: mdl-35091226

ABSTRACT

BACKGROUND: Torque teno virus (TTV) DNA load in plasma directly associates with the net state of immunosuppression and inflammation in different clinical settings, including transplantation and chronic inflammatory diseases. OBJECTIVES: We investigated whether plasma TTV DNA load may predict the occurrence of certain infectious events and overall mortality in critically ill COVID-19 patients. PATIENTS AND METHODS: 50 patients (median age, 65.5 years) were recruited. TTV DNA load was quantitated in serial plasma specimens by real-time PCR. Serum levels of interleukin-6, C-reactive protein, ferritin, lactate dehydrogenase, Gamma-Glutamyl Transferase (GGT), alanine transaminase (ALT) and aspartate transaminase (AST) and absolute lymphocyte counts (ALC) in paired specimens were available. Nosocomial bloodstream infections and ventilator-associated pneumonia and overall mortality were the clinical outcomes. RESULTS: TTV DNA was detected in 38 patients (76%). A weak inverse correlation (Rho=-0.28; P = 0.004) was observed between TTV DNA loads and ALC. No direct correlation was found between TTV DNA load and serum levels of any of the above biomarkers. Patients with detectable TTV DNA had an increased risk of subsequently developing infectious events (HR 9.28; 95% CI, 1.29-69.5; P = 0.03). A trend (P = 0.05) towards higher TTV DNA area under a curve between days 7 and 17 after ICU admission (AUC7-17) was observed in patients who died, as compared to survivors. CONCLUSION: Our findings suggested that plasma TTV DNA load monitoring may be helpful for predicting the occurrence of severe nosocomial infections and mortality in critically ill COVID-19 patients.


Subject(s)
COVID-19 , DNA Virus Infections , Torque teno virus , Viral Load , Aged , Critical Illness , DNA, Viral , Humans , SARS-CoV-2 , Torque teno virus/genetics
9.
J Med Virol ; 94(1): 222-228, 2022 01.
Article in English | MEDLINE | ID: mdl-34449894

ABSTRACT

The current study aimed at characterizing the dynamics of SARS-CoV-2 nucleocapsid (N) antigenemia in a cohort of critically ill adult COVID-19 patients and assessing its potential association with plasma levels of biomarkers of clinical severity and mortality. Seventy-three consecutive critically ill COVID-19 patients (median age, 65 years) were recruited. Serial plasma (n = 340) specimens were collected. A lateral flow immunochromatography assay and reverse-transcription polymerase chain reaction (RT-PCR) were used for SARS-CoV-2 N protein detection and RNA quantitation and in plasma, respectively. Serum levels of inflammatory and tissue-damage biomarkers in paired specimens were measured. SARS-CoV-RNA N-antigenemia and viral RNAemia were documented in 40.1% and 35.6% of patients, respectively at a median of 9 days since symptoms onset. The level of agreement between the qualitative results returned by the N-antigenemia assay and plasma RT-PCR was moderate (k = 0.57; p < 0.0001). A trend towards higher SARS-CoV-2 RNA loads was seen in plasma specimens testing positive for N-antigenemia assay than in those yielding negative results (p = 0.083). SARS-CoV-2 RNA load in tracheal aspirates was significantly higher (p < 0.001) in the presence of concomitant N-antigenemia than in its absence. Significantly higher serum levels of ferritin, lactose dehydrogenase, C-reactive protein, and D-dimer were quantified in paired plasma SARS-CoV-2 N-positive specimens than in those testing negative. Occurrence of SARS-CoV-2 N-antigenemia was not associated with increased mortality in univariate logistic regression analysis (odds ratio, 1.29; 95% confidence interval, 0.49-3.34; p = 0.59). In conclusion, SARS-CoV-2 N-antigenemia detection is relatively common in ICU patients and appears to associate with increased serum levels of inflammation and tissue-damage markers. Whether this virological parameter may behave as a biomarker of poor clinical outcome awaits further investigations.


Subject(s)
COVID-19/virology , Coronavirus Nucleocapsid Proteins/blood , Critical Illness , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Antigens, Viral/blood , Biomarkers/analysis , Biomarkers/blood , COVID-19/mortality , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Inflammation , Male , Middle Aged , Phosphoproteins/blood , Phosphoproteins/immunology , Prospective Studies , RNA, Viral/analysis , RNA, Viral/blood , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Trachea/virology , Young Adult
10.
Int J Mol Sci ; 22(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576097

ABSTRACT

Sepsis management remains one of the most important challenges in modern clinical practice. Rapid progression from sepsis to septic shock is practically unpredictable, hence the critical need for sepsis biomarkers that can help clinicians in the management of patients to reduce the probability of a fatal outcome. Circulating nucleoproteins released during the inflammatory response to infection, including neutrophil extracellular traps, nucleosomes, and histones, and nuclear proteins like HMGB1, have been proposed as markers of disease progression since they are related to inflammation, oxidative stress, endothelial damage, and impairment of the coagulation response, among other pathological features. The aim of this work was to evaluate the actual potential for decision making/outcome prediction of the most commonly proposed chromatin-related biomarkers (i.e., nucleosomes, citrullinated H3, and HMGB1). To do this, we compared different ELISA measuring methods for quantifying plasma nucleoproteins in a cohort of critically ill patients diagnosed with sepsis or septic shock compared to nonseptic patients admitted to the intensive care unit (ICU), as well as to healthy subjects. Our results show that all studied biomarkers can be used to monitor sepsis progression, although they vary in their effectiveness to separate sepsis and septic shock patients. Our data suggest that HMGB1/citrullinated H3 determination in plasma is potentially the most promising clinical tool for the monitoring and stratification of septic patients.


Subject(s)
Biomarkers/metabolism , Chromatin/metabolism , Shock, Septic/metabolism , Animals , Antibodies, Monoclonal/metabolism , Citrulline/metabolism , Cohort Studies , Female , HMGB1 Protein/metabolism , Histones/metabolism , Humans , Immunoassay , Male , Mice , Middle Aged , Nucleoproteins/blood , Pilot Projects
12.
ERJ Open Res ; 7(1)2021 Jan.
Article in English | MEDLINE | ID: mdl-33532473

ABSTRACT

This study found no association of the top two associated FER variants with severity of community-acquired pneumonia. Precise characterisation of phenotypes may be required in order to unravel the genetic mechanisms predisposing to poor outcome in sepsis. https://bit.ly/3jc9SmR.

13.
Antioxidants (Basel) ; 9(10)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003552

ABSTRACT

Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak emerged, countless efforts are being made worldwide to understand the molecular mechanisms underlying the coronavirus disease 2019 (COVID-19) in an attempt to identify the specific clinical characteristics of critically ill COVID-19 patients involved in its pathogenesis and provide therapeutic alternatives to minimize COVID-19 severity. Recently, COVID-19 has been closely related to sepsis, which suggests that most deceases in intensive care units (ICU) may be a direct consequence of SARS-CoV-2 infection-induced sepsis. Understanding oxidative stress and the molecular inflammation mechanisms contributing to COVID-19 progression to severe phenotypes such as sepsis is a current clinical need in the effort to improve therapies in SARS-CoV-2 infected patients. This article aims to review the molecular pathogenesis of SARS-CoV-2 and its relationship with oxidative stress and inflammation, which can contribute to sepsis progression. We also provide an overview of potential antioxidant therapies and active clinical trials that might prevent disease progression or reduce its severity.

14.
Crit Care Med ; 48(12): 1841-1844, 2020 12.
Article in English | MEDLINE | ID: mdl-32826431

ABSTRACT

Great efforts are being made worldwide to identify the specific clinical characteristics of infected critically ill patients that mediate the associated pathogenesis, including vascular dysfunction, thrombosis, dysregulated inflammation, and respiratory complications. Recently, coronavirus disease 2019 has been closely related to sepsis, which suggests that most deaths in ICUs in infected patients are produced by viral sepsis. Understanding the physiopathology of the disease that lead to sepsis after severe acute respiratory syndrome coronavirus 2 infection is a current clinical need to improve intensive care-applied therapies applied to critically ill patients. Although the whole representative data characterizing the immune and inflammatory status in coronavirus disease 2019 patients are not completely known, it is clear that hyperinflammation and coagulopathy contribute to disease severity. Here, we present some common features shared by severe coronavirus disease 2019 patients and sepsis and describe proposed anti-inflammatory therapies for coronavirus disease 2019 which have been previously evaluated in sepsis.


Subject(s)
COVID-19/immunology , Critical Care/methods , Respiratory Distress Syndrome/immunology , Sepsis/immunology , Anti-Inflammatory Agents/therapeutic use , Blood Coagulation Disorders/prevention & control , COVID-19/complications , Cytokines/antagonists & inhibitors , Glucocorticoids/therapeutic use , Humans , Respiratory Distress Syndrome/etiology , SARS-CoV-2 , Sepsis/etiology , Sepsis/therapy , Thrombosis
15.
Trials ; 21(1): 717, 2020 Aug 16.
Article in English | MEDLINE | ID: mdl-32799933

ABSTRACT

BACKGROUND: There are no specific generally accepted therapies for the coronavirus disease 2019 (COVID-19). The full spectrum of COVID-19 ranges from asymptomatic disease to mild respiratory tract illness to severe pneumonia, acute respiratory distress syndrome (ARDS), multisystem organ failure, and death. The efficacy of corticosteroids in viral ARDS remains unknown. We postulated that adjunctive treatment of established ARDS caused by COVID-19 with intravenous dexamethasone might change the pulmonary and systemic inflammatory response and thereby reduce morbidity, leading to a decrease in duration of mechanical ventilation and in mortality. METHODS/DESIGN: This is a multicenter, randomized, controlled, parallel, open-label, superiority trial testing dexamethasone in 200 mechanically ventilated adult patients with established moderate-to-severe ARDS caused by confirmed SARS-CoV-2 infection. Established ARDS is defined as maintaining a PaO2/FiO2 ≤ 200 mmHg on PEEP ≥ 10 cmH2O and FiO2 ≥ 0.5 after 12 ± 3 h of routine intensive care. Eligible patients will be randomly assigned to receive either dexamethasone plus standard intensive care or standard intensive care alone. Patients in the dexamethasone group will receive an intravenous dose of 20 mg once daily from day 1 to day 5, followed by 10 mg once daily from day 6 to day 10. The primary outcome is 60-day mortality. The secondary outcome is the number of ventilator-free days, defined as days alive and free from mechanical ventilation at day 28 after randomization. All analyses will be done according to the intention-to-treat principle. DISCUSSION: This study will assess the role of dexamethasone in patients with established moderate-to-severe ARDS caused by SARS-CoV-2. TRIAL REGISTRATION: ClinicalTrials.gov NCT04325061 . Registered on 25 March 2020 as DEXA-COVID19.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Dexamethasone/therapeutic use , Pneumonia, Viral/drug therapy , Randomized Controlled Trials as Topic , Adult , COVID-19 , Dexamethasone/adverse effects , Humans , Outcome Assessment, Health Care , Pandemics , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2 , Sample Size , COVID-19 Drug Treatment
16.
Epigenomics ; 12(7): 617-646, 2020 04.
Article in English | MEDLINE | ID: mdl-32396480

ABSTRACT

Sepsis is a life-threatening condition that occurs when the body responds to an infection damaging its own tissues. Sepsis survivors sometimes suffer from immunosuppression increasing the risk of death. To our best knowledge, there is no 'gold standard' for defining immunosuppression except for a composite clinical end point. As the immune system is exposed to epigenetic changes during and after sepsis, research that focuses on identifying new biomarkers to detect septic patients with immunoparalysis could offer new epigenetic-based strategies to predict short- and long-term pathological events related to this life-threatening state. This review describes the most relevant epigenetic mechanisms underlying alterations in the innate and adaptive immune responses described in sepsis and septic shock, and their consequences for immunosuppression states, providing several candidates to become epigenetic biomarkers that could improve sepsis management and help predict immunosuppression in postseptic patients.


Subject(s)
Epigenesis, Genetic , Immunosuppression Therapy , Sepsis/genetics , Shock, Septic/genetics , Adaptive Immunity , Biomarkers , DNA Methylation , Histones , Humans , Immunity, Innate , RNA, Untranslated , Sepsis/immunology , Shock, Septic/immunology
18.
Lancet Respir Med ; 8(3): 267-276, 2020 03.
Article in English | MEDLINE | ID: mdl-32043986

ABSTRACT

BACKGROUND: There is no proven specific pharmacological treatment for patients with the acute respiratory distress syndrome (ARDS). The efficacy of corticosteroids in ARDS remains controversial. We aimed to assess the effects of dexamethasone in ARDS, which might change pulmonary and systemic inflammation and result in a decrease in duration of mechanical ventilation and mortality. METHODS: We did a multicentre, randomised controlled trial in a network of 17 intensive care units (ICUs) in teaching hospitals across Spain in patients with established moderate-to-severe ARDS (defined by a ratio of partial pressure of arterial oxygen to the fraction of inspired oxygen of 200 mm Hg or less assessed with a positive end-expiratory pressure of 10 cm H2O or more and FiO2 of 0·5 or more at 24 h after ARDS onset). Patients with brain death, terminal-stage disease, or receiving corticosteroids or immunosuppressive drugs were excluded. Eligible patients were randomly assigned based on balanced treatment assignments with a computerised randomisation allocation sequence using blocks of 10 opaque, sealed envelopes to receive immediate treatment with dexamethasone or continued routine intensive care (control group). Patients in the dexamethasone group received an intravenous dose of 20 mg once daily from day 1 to day 5, which was reduced to 10 mg once daily from day 6 to day 10. Patients in both groups were ventilated with lung-protective mechanical ventilation. Allocation concealment was maintained at all sites during the trial. Primary outcome was the number of ventilator-free days at 28 days, defined as the number of days alive and free from mechanical ventilation from day of randomisation to day 28. Secondary outcome was all-cause mortality 60 days after randomisation. All analyses were done according to the intention-to-treat principle. This study is registered with ClinicalTrials.gov, NCT01731795. FINDINGS: Between March 28, 2013, and Dec 31, 2018, we enrolled 277 patients and randomly assigned 139 patients to the dexamethasone group and 138 to the control group. The trial was stopped by the data safety monitoring board due to low enrolment rate after enrolling more than 88% (277/314) of the planned sample size. The mean number of ventilator-free days was higher in the dexamethasone group than in the control group (between-group difference 4·8 days [95% CI 2·57 to 7·03]; p<0·0001). At 60 days, 29 (21%) patients in the dexamethasone group and 50 (36%) patients in the control group had died (between-group difference -15·3% [-25·9 to -4·9]; p=0·0047). The proportion of adverse events did not differ significantly between the dexamethasone group and control group. The most common adverse events were hyperglycaemia in the ICU (105 [76%] patients in the dexamethasone group vs 97 [70%] patients in the control group), new infections in the ICU (eg, pneumonia or sepsis; 33 [24%] vs 35 [25%]), and barotrauma (14 [10%] vs 10 [7%]). INTERPRETATION: Early administration of dexamethasone could reduce duration of mechanical ventilation and overall mortality in patients with established moderate-to-severe ARDS. FUNDING: Fundación Mutua Madrileña, Instituto de Salud Carlos III, The European Regional Development's Funds, Asociación Científica Pulmón y Ventilación Mecánica.


Subject(s)
Dexamethasone/administration & dosage , Glucocorticoids/administration & dosage , Respiratory Distress Syndrome/drug therapy , Administration, Intravenous , Adult , Aged , Female , Humans , Intensive Care Units , Male , Middle Aged , Respiration, Artificial/adverse effects , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/mortality , Severity of Illness Index , Treatment Outcome
20.
J Clin Immunol ; 40(1): 203-210, 2020 01.
Article in English | MEDLINE | ID: mdl-31828694

ABSTRACT

Mannose-binding lectin (MBL)-associated serine protease-2 (MASP-2) is an indispensable enzyme for the activation of the lectin pathway of complement. Its deficiency is classified as a primary immunodeficiency associated to pyogenic bacterial infections, inflammatory lung disease, and autoimmunity. In Europeans, MASP-2 deficiency, due to homozygosity for c.359A > G (p.D120G), occurs in 7 to 14/10,000 individuals. We analyzed the presence of the p.D120G mutation in adults (increasing the sample size of our previous studies) and children. Different groups of patients (1495 adults hospitalized with community-acquired pneumonia, 186 adults with systemic lupus erythematosus, 103 pediatric patients with invasive pneumococcal disease) and control individuals (1119 healthy adult volunteers, 520 adult patients without history of relevant infectious diseases, and a pediatric control group of 311 individuals) were studied. Besides our previously reported MASP-2-deficient healthy adults, we found a new p.D120G homozygous individual from the pediatric control group. We also reviewed p.D120G homozygous individuals reported so far: a total of eleven patients with a highly heterogeneous range of disorders and nine healthy controls (including our four MASP-2-deficient individuals) have been identified by chance in association studies. Individuals with complete deficiencies of several pattern recognition molecules of the lectin pathway (MBL, collectin-10 and collectin-11, and ficolin-3) as well as of MASP-1 and MASP-3 have also been reviewed. Cumulative evidence suggests that MASP-2, and even other components of the LP, are largely redundant in human defenses and that individuals with MASP-2 deficiency do not seem to be particularly prone to infectious or autoimmune diseases.


Subject(s)
Mannose-Binding Protein-Associated Serine Proteases/deficiency , Primary Immunodeficiency Diseases/genetics , Signal Transduction/genetics , Adult , Child , Community-Acquired Infections/genetics , Female , Genotype , Humans , Lectins/genetics , Lupus Erythematosus, Systemic/genetics , Male , Mannose-Binding Lectin/genetics , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...