Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Clin Neurophysiol ; 162: 210-218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643614

ABSTRACT

OBJECTIVE: Focal cortical dysplasias (FCD) are characterized by distinct interictal spike patterns and high frequency oscillations (HFOs; ripples: 80-250 Hz; fast ripples: 250-500 Hz) in the intra-operative electrocorticogram (ioECoG). We studied the temporal relation between intra-operative spikes and HFOs and their relation to resected tissue in people with FCD with a favorable outcome. METHODS: We included patients who underwent ioECoG-tailored epilepsy surgery with pathology confirmed FCD and long-term Engel 1A outcome. Spikes and HFOs were automatically detected and visually checked in 1-minute pre-resection-ioECoG. Channels covering resected and non-resected tissue were compared using a logistic mixed model, assessing event numbers, co-occurrence ratios, and time-based properties. RESULTS: We found pre-resection spikes, ripples in respectively 21 and 20 out of 22 patients. Channels covering resected tissue showed high numbers of spikes and HFOs, and high ratios of co-occurring events. Spikes, especially with ripples, have a relatively sharp rising flank with a long descending flank and early ripple onset over resected tissue. CONCLUSIONS: A combined analysis of event numbers, ratios, and temporal relationships between spikes and HFOs may aid identifying epileptic tissue in epilepsy surgery. SIGNIFICANCE: This study shows a promising method for clinically relevant properties of events, closely associated with FCD.


Subject(s)
Electrocorticography , Intraoperative Neurophysiological Monitoring , Malformations of Cortical Development , Humans , Female , Male , Adult , Adolescent , Malformations of Cortical Development/physiopathology , Malformations of Cortical Development/surgery , Electrocorticography/methods , Young Adult , Intraoperative Neurophysiological Monitoring/methods , Child , Middle Aged , Epilepsy/physiopathology , Epilepsy/surgery , Epilepsy/diagnosis , Brain Waves/physiology , Child, Preschool , Action Potentials/physiology , Electroencephalography/methods , Focal Cortical Dysplasia
2.
Lancet Neurol ; 21(11): 982-993, 2022 11.
Article in English | MEDLINE | ID: mdl-36270309

ABSTRACT

BACKGROUND: Intraoperative electrocorticography is used to tailor epilepsy surgery by analysing interictal spikes or spike patterns that can delineate epileptogenic tissue. High-frequency oscillations (HFOs) on intraoperative electrocorticography have been proposed as a new biomarker of epileptogenic tissue, with higher specificity than spikes. We prospectively tested the non-inferiority of HFO-guided tailoring of epilepsy surgery to spike-guided tailoring on seizure freedom at 1 year. METHODS: The HFO trial was a randomised, single-blind, adaptive non-inferiority trial at an epilepsy surgery centre (UMC Utrecht) in the Netherlands. We recruited children and adults (no age limits) who had been referred for intraoperative electrocorticography-tailored epilepsy surgery. Participants were randomly allocated (1:1) to either HFO-guided or spike-guided tailoring, using an online randomisation scheme with permuted blocks generated by an independent data manager, stratified by epilepsy type. Treatment allocation was masked to participants and clinicians who documented seizure outcome, but not to the study team or neurosurgeon. Ictiform spike patterns were always considered in surgical decision making. The primary endpoint was seizure outcome after 1 year (dichotomised as seizure freedom [defined as Engel 1A-B] vs seizure recurrence [Engel 1C-4]). We predefined a non-inferiority margin of 10% risk difference. Analysis was by intention to treat, with prespecified subgroup analyses by epilepsy type and for confounders. This completed trial is registered with the Dutch Trial Register, Toetsingonline ABR.NL44527.041.13, and ClinicalTrials.gov, NCT02207673. FINDINGS: Between Oct 10, 2014, and Jan 31, 2020, 78 individuals were enrolled to the study and randomly assigned (39 to HFO-guided tailoring and 39 to spike-guided tailoring). There was no loss to follow-up. Seizure freedom at 1 year occurred in 26 (67%) of 39 participants in the HFO-guided group and 35 (90%) of 39 in the spike-guided group (risk difference -23·5%, 90% CI -39·1 to -7·9; for the 48 patients with temporal lobe epilepsy, the risk difference was -25·5%, -45·1 to -6·0, and for the 30 patients with extratemporal lobe epilepsy it was -20·3%, -46·0 to 5·4). Pathology associated with poor prognosis was identified as a confounding factor, with an adjusted risk difference of -7·9% (90% CI -20·7 to 4·9; adjusted risk difference -12·5%, -31·0 to 5·9, for temporal lobe epilepsy and 5·8%, -7·7 to 19·5, for extratemporal lobe epilepsy). We recorded eight serious adverse events (five in the HFO-guided group and three in the spike-guided group) requiring hospitalisation. No patients died. INTERPRETATION: HFO-guided tailoring of epilepsy surgery was not non-inferior to spike-guided tailoring on intraoperative electrocorticography. After adjustment for confounders, HFOs show non-inferiority in extratemporal lobe epilepsy. This trial challenges the clinical value of HFOs as an epilepsy biomarker, especially in temporal lobe epilepsy. Further research is needed to establish whether HFO-guided intraoperative electrocorticography holds promise in extratemporal lobe epilepsy. FUNDING: UMCU Alexandre Suerman, EpilepsieNL, RMI Talent Fellowship, European Research Council, and MING Fund.


Subject(s)
Epilepsies, Partial , Epilepsy, Temporal Lobe , Epilepsy , Adult , Child , Humans , Electrocorticography , Single-Blind Method , Netherlands , Epilepsy/surgery , Seizures/surgery , Epilepsies, Partial/surgery
3.
Clin Neurophysiol ; 143: 172-181, 2022 11.
Article in English | MEDLINE | ID: mdl-36115810

ABSTRACT

OBJECTIVE: To compare scalp-EEG recorded physiological ripples co-occurring with vertex waves to pathological ripples co-occurring with interictal epileptiform discharges (IEDs). METHODS: We marked ripples in sleep EEGs of children. We compared the start of ripples to vertex wave- or IED-start, and duration, frequency, and root mean square (RMS) amplitude of physiological and pathological ripples using multilevel modeling. Ripples were classified as physiological or pathological using linear discriminant analysis. RESULTS: We included 40 children with and without epilepsy. Ripples started (χ2(1) = 38.59, p < 0.001) later if they co-occurred with vertex waves (108.2 ms after vertex wave-start) than if they co-occurred with IEDs (4.3 ms after IED-start). Physiological ripples had longer durations (75.7 ms vs 53.0 ms), lower frequencies (98.3 Hz vs 130.6 Hz), and lower RMS amplitudes (0.9 µV vs 1.8 µV, all p < 0.001) than pathological ripples. Ripples could be classified as physiological or pathological with 98 % accuracy. Ripples recorded in children with idiopathic or symptomatic epilepsy seemed to form two subgroups of pathological ripples. CONCLUSIONS: Ripples co-occurring with vertex waves or IEDs have different characteristics and can be differentiated as physiological or pathological with high accuracy. SIGNIFICANCE: This is the first study that compares physiological and pathological ripples recorded with scalp EEG.


Subject(s)
Epilepsy , Scalp , Child , Electroencephalography , Epilepsy/diagnosis , Humans
4.
Epilepsia ; 62(5): 1208-1219, 2021 05.
Article in English | MEDLINE | ID: mdl-33778971

ABSTRACT

OBJECTIVE: To study the association between timing and characteristics of the first electroencephalography (EEG) with epileptiform discharges (ED-EEG) and epilepsy and neurodevelopment at 24 months in infants with tuberous sclerosis complex (TSC). METHODS: Patients enrolled in the prospective Epileptogenesis in a genetic model of epilepsy - Tuberous sclerosis complex (EPISTOP) trial, had serial EEG monitoring until the age of 24 months. The timing and characteristics of the first ED-EEG were studied in relation to clinical outcome. Epilepsy-related outcomes were analyzed separately in a conventionally followed group (initiation of vigabatrin after seizure onset) and a preventive group (initiation of vigabatrin before seizures, but after appearance of interictal epileptiform discharges [IEDs]). RESULTS: Eighty-three infants with TSC were enrolled at a median age of 28 days (interquartile range [IQR] 14-54). Seventy-nine of 83 patients (95%) developed epileptiform discharges at a median age of 77 days (IQR 23-111). Patients with a pathogenic TSC2 variant were significantly younger (P-value .009) at first ED-EEG and more frequently had multifocal IED (P-value .042) than patients with a pathogenic TSC1 variant. A younger age at first ED-EEG was significantly associated with lower cognitive (P-value .010), language (P-value .001), and motor (P-value .013) developmental quotients at 24 months. In the conventional group, 48 of 60 developed seizures. In this group, the presence of focal slowing on the first ED-EEG was predictive of earlier seizure onset (P-value .030). Earlier recording of epileptiform discharges (P-value .019), especially when multifocal (P-value .026) was associated with higher risk of drug-resistant epilepsy. In the preventive group, timing, distribution of IED, or focal slowing, was not associated with the epilepsy outcomes. However, when multifocal IEDs were present on the first ED-EEG, preventive treatment delayed the onset of seizures significantly (P-value <.001). SIGNIFICANCE: Early EEG findings help to identify TSC infants at risk of severe epilepsy and neurodevelopmental delay and those who may benefit from preventive treatment with vigabatrin.


Subject(s)
Anticonvulsants/therapeutic use , Early Diagnosis , Epilepsy/diagnosis , Epilepsy/drug therapy , Tuberous Sclerosis/complications , Developmental Disabilities/epidemiology , Developmental Disabilities/etiology , Electroencephalography , Epilepsy/etiology , Female , Humans , Infant , Infant, Newborn , Male , Tuberous Sclerosis/diagnosis , Tuberous Sclerosis/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/genetics , Vigabatrin/therapeutic use
5.
Epilepsia ; 62(4): 997-1004, 2021 04.
Article in English | MEDLINE | ID: mdl-33617688

ABSTRACT

OBJECTIVE: In people with low-grade intrinsic brain tumors, an epileptic focus is often located close to the lesion. High-frequency oscillations (HFOs) in electrocorticography (ECoG) might help to delineate this focus. We investigated the relationship between HFOs and low-grade brain tumors and their potential value for tumor-related epilepsy surgery. METHODS: We analyzed pre- and postresection intraoperative ECoG in 41 patients with refractory epilepsy and a low-grade lesion. Electrodes were designated as overlying the tumor, adjacent resected tissue (peritumoral), or outside the resection bed using magnetic resonance imaging (MRI) and intraoperative photographs. We then used a semiautomated approach to detect HFOs as either ripples (80-250 Hz) or fast ripples (250-500 Hz). RESULTS: The rate of fast ripples was higher in electrodes covering tumor and peritumoral tissue than outside the resection (p = .04). Mesiotemporal tumors showed more ripples (p = .002), but not more fast ripples (p = .07), than superficial tumors. Rates of fast ripples were higher in glioma and extraventricular neurocytoma than in ganglioglioma or dysembryoplastic neuroepithelial tumor (DNET). The rate of ripples and fast ripples in postresection ECoG was not higher in patients with residual tumor tissue on MRI than those without. The rate of ripples in postresection ECoG was higher in patients with good than bad seizure outcome (p = .03). Fast ripples outside the resection and in post-ECoG seem related to seizure recurrence. SIGNIFICANCE: Fast ripples in intraoperative ECoG can be used to help guide resection in tumor-related epilepsy surgery. Preresection fast ripples occur predominantly in epileptogenic tumor and peritumoral tissue. Fast ripple rates are higher in glioma and extraventricular neurocytoma than in ganglioglioma and DNET.


Subject(s)
Brain Neoplasms/physiopathology , Brain Neoplasms/surgery , Electrocorticography/methods , Epilepsy/physiopathology , Epilepsy/surgery , Intraoperative Neurophysiological Monitoring/methods , Adolescent , Adult , Brain Neoplasms/diagnosis , Brain Waves/physiology , Child , Child, Preschool , Cohort Studies , Epilepsy/diagnosis , Female , Humans , Infant , Male , Middle Aged , Young Adult
6.
Front Neurol ; 11: 582891, 2020.
Article in English | MEDLINE | ID: mdl-33178126

ABSTRACT

Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder with a high risk of early-onset epilepsy and a high prevalence of neurodevelopmental comorbidities, including intellectual disability and autism spectrum disorder (ASD). Therefore, TSC is an interesting disease model to investigate early biomarkers of neurodevelopmental comorbidities when interventions are favourable. We investigated whether early EEG characteristics can be used to predict neurodevelopment in infants with TSC. The first recorded EEG of 64 infants with TSC, enrolled in the international prospective EPISTOP trial (recorded at a median gestational age 42 4/7 weeks) was first visually assessed. EEG characteristics were correlated with ASD risk based on the ADOS-2 score, and cognitive, language, and motor developmental quotients (Bayley Scales of Infant and Toddler Development III) at the age of 24 months. Quantitative EEG analysis was used to validate the relationship between EEG background abnormalities and ASD risk. An abnormal first EEG (OR = 4.1, p-value = 0.027) and more specifically a dysmature EEG background (OR = 4.6, p-value = 0.017) was associated with a higher probability of ASD traits at the age of 24 months. This association between an early abnormal EEG and ASD risk remained significant in a multivariable model, adjusting for mutation and treatment (adjusted OR = 4.2, p-value = 0.029). A dysmature EEG background was also associated with lower cognitive (p-value = 0.029), language (p-value = 0.001), and motor (p-value = 0.017) developmental quotients at the age of 24 months. Our findings suggest that early EEG characteristics in newborns and infants with TSC can be used to predict neurodevelopmental comorbidities.

7.
Clin Neurophysiol ; 131(5): 1134-1141, 2020 05.
Article in English | MEDLINE | ID: mdl-32222614

ABSTRACT

OBJECTIVE: To investigate how high frequency oscillations (HFOs; ripples 80-250 Hz, fast ripples (FRs) 250-500 Hz) and spikes in intra-operative electrocorticography (ioECoG) relate to cognitive outcome after epilepsy surgery in children. METHODS: We retrospectively included 20 children who were seizure free after epilepsy surgery using ioECoG and determined their intelligence quotients (IQ) pre- and two years postoperatively. We analyzed whether the number of HFOs and spikes in pre- and postresection ioECoGs, and their change in the non-resected areas relate to cognitive improvement (with ≥ 5 IQ points increase considered to be clinically relevant (=IQ+ group) and < 5 IQ points as irrelevant (=IQ- group)). RESULTS: The IQ+ group showed significantly more FRs in the resected tissue (p = 0.01) and less FRs in the postresection ioECoG (p = 0.045) compared to the IQ- group. Postresection decrease of ripples on spikes was correlated with postoperative cognitive improvement (correlation coefficient = -0.62 with p = 0.01). CONCLUSIONS: Postoperative cognitive improvement was related to reduction of pathological HFOs signified by removing FR generating areas with subsequently less residual FRs, and decrease of ripples on spikes in the resection edge of the non-resected area. SIGNIFICANCE: HFOs recorded in ioECoG could play a role as biomarkers in the prediction and understanding of cognitive outcome after epilepsy surgery.


Subject(s)
Brain Waves/physiology , Cognition/physiology , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/surgery , Electrocorticography/methods , Mental Status and Dementia Tests , Adolescent , Child , Cohort Studies , Drug Resistant Epilepsy/diagnosis , Female , Humans , Male , Retrospective Studies
8.
Int J Dev Neurosci ; 79: 96-104, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31770571

ABSTRACT

Recent studies suggested a possible association between malformations of cortical development and microvascular density. In this study we aimed to further elucidate the relation between microvascular density and cortical developmental abnormalities in a cohort of 97 patients with epilepsy and histologically proven mild malformation of cortical development (mMCD), focal cortical dysplasia (FCD) or tuberous sclerosis complex (TSC). Surgical tissue samples were analyzed with quantitative measures of vessel density, T-cell response, microglial activation and myelin content. Subsequently, the results were compared to an age- and localization matched control group. We observed an increase in microvasculature in white matter of TSC cortical tubers, which is linked to inflammatory response. No increase was seen in mMCD or FCD subtypes compared to controls. In mMCD/FCD and tubers, lesional cortex and white matter showed increased vascular density compared to perilesional tissues. Moreover, cortical vessel density increased with longer epilepsy duration and older age at surgery while in controls it decreased with age. Our findings suggest for that the increase in white matter vascular density might be pathology-specific rather than a consequence of ongoing epileptic activity. Increased cortical vessel density with age and with longer epilepsy duration in mMCD/FCD's and tubers, however, could be a consequence of seizures.


Subject(s)
Cerebral Cortex/pathology , Epilepsy/pathology , Malformations of Cortical Development, Group I/pathology , Malformations of Cortical Development/pathology , Microvessels/pathology , Tuberous Sclerosis/pathology , Adolescent , Adult , Cerebral Cortex/surgery , Child , Child, Preschool , Epilepsy/surgery , Female , Humans , Infant , Male , Malformations of Cortical Development/surgery , Malformations of Cortical Development, Group I/surgery , Middle Aged , Tuberous Sclerosis/surgery , Young Adult
9.
Epilepsy Behav ; 94: 209-215, 2019 05.
Article in English | MEDLINE | ID: mdl-30974349

ABSTRACT

Mild malformation of cortical development (mMCD) and focal cortical dysplasia (FCD) subtypes combined are by far the most common histological diagnoses in children who undergo surgery as treatment for refractory epilepsy. In patients with refractory epilepsy, a substantial burden of disease is due to cognitive impairment. We studied intelligence quotient (IQ) or developmental quotient (DQ) values and their change after epilepsy surgery in a consecutive series of 42 children (median age at surgery: 4.5, range: 0-17.0 years) with refractory epilepsy due to mMCD/FCD. Cognitive impairment, defined as IQ/DQ below 70, was present in 51% prior to surgery. Cognitive impairment was associated with earlier onset of epilepsy, longer epilepsy duration, and FCD type I histology. Clinically relevant improvement of ≥10 IQ/DQ points was found in 24% of children and was related to the presence of presurgical epileptic encephalopathy (EE). At time of postsurgical cognitive testing, 59% of children were completely seizure-free (Engel 1A). We found no association between cognitive outcome and seizure or medication status at two years of follow-up. Epilepsy surgery in children with mMCD or FCD not only is likely to result in complete and continuous seizure freedom, but also improves cognitive function in many.


Subject(s)
Cognitive Dysfunction/surgery , Epilepsy/surgery , Malformations of Cortical Development/surgery , Outcome Assessment, Health Care , Adolescent , Child , Child, Preschool , Cognitive Dysfunction/etiology , Craniofacial Abnormalities/complications , Craniofacial Abnormalities/surgery , Drug Resistant Epilepsy/complications , Drug Resistant Epilepsy/surgery , Epilepsies, Partial/complications , Epilepsies, Partial/surgery , Epilepsy/complications , Female , Follow-Up Studies , Humans , Infant , Male , Malformations of Cortical Development/complications
10.
Epilepsia Open ; 4(1): 170-175, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30868127

ABSTRACT

Focal cortical dysplasia (FCD) and mild malformation of cortical development (mMCD) are frequent histopathologic diagnoses in patients who undergo surgery for refractory epilepsy. Literature concerning surgical outcome in patients with mMCD, as well as its contrast with FCD, has been scarce. We studied 88 patients with a histopathologic diagnosis of isolated FCD (n = 57) or mMCD (n = 31), revised according to the latest International League Against Epilepsy (ILAE) guidelines, who underwent resective or disconnective surgery. Our findings suggest differences between mMCD and FCD in clinical presentation and surgical outcome after surgery. Patients with mMCD developed seizures later in life, and their lesions had a predilection for location in the temporal lobe and remained undetected by magnetic resonance imaging (MRI) more frequently. A diagnosis of mMCD has a less favorable surgical outcome. Still, 32% of these patients reached continuous seizure freedom (Engel class 1A) at a latest median follow-up duration of 8 years, compared to 59% in FCD. A histopathologic diagnosis of mMCD, extratemporal surgery, and indication of an incomplete resection each were independent predictors of poor outcome.

SELECTION OF CITATIONS
SEARCH DETAIL