Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Arch Toxicol ; 98(1): 165-179, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37839054

ABSTRACT

The recent emergence of new synthetic opioids (NSOs) compounds in the illicit market is increasingly related to fatal cases. Identification and medical care of NSO intoxication cases are challenging, particularly due to high frequency of new products and extensive metabolism. As the study of NSO metabolism is crucial for the identification of these drugs in cases of intoxication, we aimed to investigate the metabolism of the piperazine NSO AP-237 (= bucinnazine). Two complementary approaches (in silico and in vitro) were used to identify putative AP-237 metabolites which could be used as consumption markers. In silico metabolism studies were realized by combining four open access softwares (MetaTrans, SyGMa, Glory X, Biotransformer 3.0). In vitro experiments were performed by incubating AP-237 (20 µM) in differentiated HepaRG cells during 0 h, 8 h, 24 h or 48 h. Cell supernatant were extracted and analyzed by liquid chromatography coupled to high-resolution mass spectrometry and data were reprocessed using three strategies (MetGem, GNPS or Compound Discoverer®). A total of 28 phase I and six phase II metabolites was predicted in silico. Molecular networking identified seven putative phase I metabolites (m/z 203.154, m/z 247.180, m/z 271.180, two m/z 289.191 isomers, m/z 305.186, m/z 329.222), including four previously unknown metabolites. Overall, this cross-disciplinary approach with molecular networking on data acquired in vitro and in silico prediction enabled to propose relevant candidate as AP-237 consumption markers that could be added to mass spectrometry libraries to help diagnose intoxication.


Subject(s)
Opiate Alkaloids , Mass Spectrometry , Analgesics, Opioid/metabolism , Piperazines
2.
Arch Toxicol ; 98(1): 151-158, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37833490

ABSTRACT

Eutylone is a cathinone-derived synthetic amphetamine scheduled by the World Health Organization and European Monitoring Centre for Drugs and Drug Addiction since 2022 due to its growing consumption. We report here an eutylone intoxication involving a 38-year-old man and a 29-year-old woman in a chemsex context. A bag containing a white crystalline powder labelled as a research product was found in their vehicle. Nuclear magnetic resonance and liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analyses identified the powder as eutylone and confirmed purity superior to 99%. LC-HRMS data analysis using molecular networking allowed to propose new eutylone metabolites in blood samples in a graphical manner. We described 16 phase I (e.g. hydroxylated or demethylated) and phase II metabolites (glucuroconjugates and sulfoconjugates). The same metabolites were found both in male and female blood samples. Toxicological analyses measured eutylone concentration in blood samples at 1374 ng/mL and 1536 ng/mL for the man and the woman, respectively. A keto-reduced metabolite (m/z 238.144) was synthesized to permit its quantification at 67 ng/mL and 54 ng/mL in male and female blood samples, respectively. Overall, the identification of these metabolites will increase the knowledge of potential drug consumption markers and allow to implement mass spectrometry databases to better monitor future drug abuse or consumption.


Subject(s)
Substance-Related Disorders , Humans , Male , Female , Adult , Chromatography, Liquid/methods , Powders , Mass Spectrometry/methods , Substance-Related Disorders/diagnosis , Amphetamine
3.
Fundam Clin Pharmacol ; 38(1): 152-167, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37665028

ABSTRACT

BACKGROUND: The antineoplastic drug busulfan can induce different hepatic lesions including cholestasis and sinusoidal obstruction syndrome. However, hepatic steatosis has never been reported in patients. OBJECTIVES: This study aimed to determine whether busulfan could induce steatosis in primary human hepatocytes (PHH) and differentiated HepaRG cells. METHODS: Neutral lipids were determined in PHH and HepaRG cells. Mechanistic investigations were performed in HepaRG cells by measuring metabolic fluxes linked to lipid homeostasis, reduced glutathione (GSH) levels, and expression of genes involved in lipid metabolism and endoplasmic reticulum (ER) stress. Analysis of two previous transcriptomic datasets was carried out. RESULTS: Busulfan induced lipid accumulation in HepaRG cells but not in six different batches of PHH. In HepaRG cells, busulfan impaired VLDL secretion, increased fatty acid uptake, and induced ER stress. Transcriptomic data analysis and decreased GSH levels suggested that busulfan-induced steatosis might be linked to the high expression of glutathione S-transferase (GST) isoenzyme A1, which is responsible for the formation of the hepatotoxic sulfonium cation conjugate. In keeping with this, the GST inhibitor ethacrynic acid and the chemical chaperone tauroursodeoxycholic acid alleviated busulfan-induced lipid accumulation in HepaRG cells supporting the role of the sulfonium cation conjugate and ER stress in steatosis. CONCLUSION: While the HepaRG cell line is an invaluable tool for pharmacotoxicological studies, it might not be always an appropriate model to predict and mechanistically investigate drug-induced liver injury. Hence, we recommend carrying out toxicological investigations in both HepaRG cells and PHH to avoid drawing wrong conclusions on the potential hepatotoxicity of drugs and other xenobiotics.


Subject(s)
Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Fatty Liver , Humans , Busulfan/toxicity , Busulfan/metabolism , Hepatocytes/metabolism , Fatty Liver/chemically induced , Fatty Liver/metabolism , Chemical and Drug Induced Liver Injury/etiology , Cations/metabolism , Lipids/adverse effects , Liver/metabolism
4.
Proc Natl Acad Sci U S A ; 120(36): e2219298120, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37639591

ABSTRACT

The characteristics and fate of cancer cells partly depend on their environmental stiffness, i.e., the local mechanical cues they face. HepaRG progenitors are liver carcinoma cells exhibiting transdifferentiation properties; however, the underlying mechanisms remain unknown. To evaluate the impact of external physical forces mimicking the tumor microenvironment, we seeded them at very high density for 20 h, keeping the cells round and unanchored to the substrate. Applied without corticoids, spatial confinement due to very high density induced reprogramming of HepaRG cells into stable replicative stem-like cells after replating at normal density. Redifferentiation of these stem-like cells into cells very similar to the original HepaRG cells was then achieved using the same stress but in the presence of corticoids. This demonstrates that the cells retained the memory required to run the complete hepatic differentiation program, after bypassing the Hayflick limit twice. We show that physical stress improved chromosome quality and genomic stability, through greater efficiency of DNA repair and restoration of telomerase activity, thus enabling cells to escape progression to a more aggressive cancer state. We also show the primary importance of high-density seeding, possibly triggering compressive stress, in these processes, rather than that of cell roundness or intracellular tensional signals. The HepaRG-derived lines established here considerably extend the lifespan and availability of this surrogate cell system for mature human hepatocytes. External physical stress is a promising way to create a variety of cell lines, and it paves the way for the development of strategies to improve cancer prognosis.


Subject(s)
Cell Transdifferentiation , Longevity , Humans , Cell Differentiation , Cell Line , Cues
5.
Free Radic Biol Med ; 205: 224-233, 2023 08 20.
Article in English | MEDLINE | ID: mdl-37315703

ABSTRACT

Mucosal healing has emerged as a therapeutic goal to achieve lasting clinical remission in ulcerative colitis. Intestinal repair in response to inflammation presumably requires higher energy supplies for the restoration of intestinal barrier and physiological functions. However, epithelial energy metabolism during intestinal mucosal healing has been little studied, whereas inflammation-induced alterations have been reported in the main energy production site, the mitochondria. The aim of the present work was to assess the involvement of mitochondrial activity and the events influencing their function during spontaneous epithelial repair after colitis induction in mouse colonic crypts. The results obtained show adaptations of colonocyte metabolism during colitis to ensure maximal ATP production for supporting energetic demand by both oxidative phosphorylation and glycolysis in a context of decreased mitochondrial biogenesis and through mitochondrial function restoration during colon epithelial repair. In parallel, colitis-induced mitochondrial ROS production in colonic epithelial cells was rapidly associated with transient expression of GSH-related enzymes. Mitochondrial respiration in colonic crypts was markedly increased during both inflammatory and recovery phases despite decreased expression of several mitochondrial respiratory chain complex subunits after colitis induction. Rapid induction of mitochondrial fusion was associated with mitochondrial function restoration. Finally, in contrast with the kinetics expression of genes involved in mitochondrial oxidative metabolism and in glycolysis, the expression of glutaminase was markedly reduced in the colonic crypts both during colitis and repair phases. Overall, our data suggest that the epithelial repair after colitis induction is characterized by a rapid and transient increased capacity for mitochondrial ATP production in a context of apparent restoration of mitochondrial biogenesis and metabolic reorientation of energy production. The potential implication of energy production adaptations within colonic crypts to sustain mucosal healing in a context of altered fuel supply is discussed.


Subject(s)
Colitis , Animals , Mice , Colitis/chemically induced , Colitis/genetics , Colon/metabolism , Inflammation/metabolism , Mitochondria/metabolism , Intestinal Mucosa/metabolism , Energy Metabolism , Adenosine Triphosphate/metabolism , Dextran Sulfate , Mice, Inbred C57BL , Disease Models, Animal
6.
Arch Toxicol ; 97(3): 671-683, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36469093

ABSTRACT

Synthetic cathinones constitute a family of new psychoactive substances, the consumption of which is increasingly worldwide. A lack of metabolic knowledge limits the detection of these compounds in cases of intoxication. Here, we used an innovative cross-disciplinary approach to study the metabolism of the newly emerging cathinone chloro-alpha-pyrrolidinovalerophenone (4-Cl-PVP). Three complementary approaches (in silico, in vitro, and in vivo) were used to identify putative 4-Cl-PVP metabolites that could be used as additional consumption markers. The in silico approach used predictive software packages. Molecular networking was used as an innovative bioinformatics approach for re-processing high-resolution tandem mass spectrometry data acquired with both in vitro and in vivo samples. In vitro experiments were performed by incubating 4-Cl-PVP (20 µM) for four different durations with a metabolically competent human hepatic cell model (differentiated HepaRG cells). In vivo samples (blood and urine) were obtained from a patient known to have consumed 4-Cl-PVP. The in silico software predicted 17 putative metabolites, and molecular networking identified 10 metabolites in vitro. On admission to the intensive care unit, the patient's plasma and urine 4-Cl-PVP concentrations were, respectively, 34.4 and 1018.6 µg/L. An in vivo analysis identified the presence of five additional glucuronoconjugated 4-Cl-PVP derivatives in the urine. Our combination of a cross-disciplinary approach with molecular networking enabled the detection of 15 4-Cl-PVP metabolites, 10 of them had not previously been reported in the literature. Two metabolites appeared to be particular relevant candidate as 4-Cl-PVP consumption markers in cases of intoxication: hydroxy-4-Cl-PVP (m/z 282.1254) and dihydroxy-4-Cl-PVP (m/z 298.1204).


Subject(s)
Pyrrolidines , Synthetic Cathinone , Humans , Tandem Mass Spectrometry , Software
7.
Pharmaceutics ; 14(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36559159

ABSTRACT

Sibiriline is a novel drug inhibiting receptor-interacting protein 1 kinase (RIPK1) and necroptosis, a regulated form of cell death involved in several disease models. In this study, we aimed to investigate the metabolic fate of sibiriline in a cross-sectional manner using an in silico prediction, coupled with in vitro and in vivo experiments. In silico predictions were performed using GLORYx and Biotransformer 3.0 freeware; in vitro incubation was performed on differentiated human HepaRG cells, and in vivo experiments including a pharmacokinetic study were performed on mice treated with sibiriline. HepaRG culture supernatants and mice plasma samples were analyzed with ultra-high-performance liquid chromatography, coupled with tandem mass spectrometry (LC-HRMS/MS). The molecular networking bioinformatics tool applied to LC-HRMS/MS data allowed us to visualize the sibiriline metabolism kinetics. Overall, 14 metabolites, mostly produced by Phase II transformations (glucuronidation and sulfation) were identified. These data provide initial reassurance regarding the toxicology of this new RIPK1 inhibitor, although further studies are required.

8.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36555217

ABSTRACT

Since the 2000s, an increasing number of new psychoactive substances (NPS) have appeared on the drug market. Arylcyclohexylamine (ACH) compounds such as ketamine, phencyclidine and eticyclidine derivatives are of particular concern, given their rapidly increasing use and the absence of detailed toxicity data. First used mainly for their pharmacological properties in anesthesia, their recreational use is increasing. ACH derivatives have an antagonistic activity against the N-methyl-D-aspartate receptor, which leads to dissociative effects (dissociation of body and mind). Synthetic ketamine derivatives produced in Asia are now arriving in Europe, where most are not listed as narcotics and are, thus, legal. These structural derivatives have pharmacokinetic and pharmacodynamic properties that are sometimes very different from ketamine. Here, we describe the pharmacology, epidemiology, chemistry and metabolism of ACH derivatives, and we review the case reports on intoxication.


Subject(s)
Ketamine , Ketamine/pharmacology , Phencyclidine , Receptors, N-Methyl-D-Aspartate , Asia , Europe
9.
Int J Legal Med ; 136(6): 1585-1596, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36050422

ABSTRACT

Carbofuran is a pesticide widely used in agricultural context to kill insects, mites, and flies by ingestion or contact. Along with literature review, we aimed to (i) present the clinical, autopsy, and toxicological findings of carbofuran self-poisonings in two 69-year-old twins, resulting in the death of one of them and (ii) assess carbofuran metabolite distribution using molecular networking. Quantitative analysis of carbofuran and its main metabolites (3-hydroxycarbofuran and 3-ketocarbofuran) was carried out using an original liquid chromatography-tandem mass spectrometry method on biological samples (cardiac or peripheral blood, urine, bile, and gastric contents). Toxicological analysis of post-mortem samples (twin 1) highlighted high concentrations of carbofuran and its metabolites in cardiac blood, bile, and gastric contents. These compounds were also quantified in blood and/or urine samples of the living brother (twin 2), confirming poisoning. Using molecular networking approach to facilitate visualization of mass spectrometry datasets and sample-to-sample comparisons, we detected two more metabolites (7-phenol-carbofuran and 3-hydroxycarbofuran glucuronide) in bile (twin 1) and urine (twin 2). These results highlight the value of (i) these compounds as carbofuran consumption markers and (ii) bile samples in post-mortem analysis to confirm poisoning. From an analytical point of view, molecular networking allowed the detection and interpretation of carbofuran metabolite ammonium adducts which helped to confirm their identification annotations, as well as their structural data. From a clinical point of view, the different outcomes between the two brothers are discussed. Overall, these cases provide novel information regarding the distribution of carbofuran and its metabolites in poisoning context.


Subject(s)
Ammonium Compounds , Carbofuran , Insecticides , Pesticides , Animals , Carbofuran/analogs & derivatives , Carbofuran/analysis , Carbofuran/chemistry , Carbofuran/metabolism , Glucuronides , Insecticides/analysis , Male , Phenols
10.
Drug Test Anal ; 14(1): 144-153, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34515415

ABSTRACT

This work first aims to investigate metabolites of 2-fluoro-deschloroketamine (2F-DCK), a new arylcyclohexylamine derivatives (a group of dissociative ketamine-based substances) using two in vitro experimental approaches, and to compare obtained results by means of molecular networking. Metabolites of 2F-DCK were investigated using both human liver microsomes (HLMs) and hepatic (HepaRG) cell line incubates using molecular networking approach: 2F-DCK pure substance was incubated with HLMs for up to 1 h at two concentrations (100 and 500 µM) and with HepaRG cells for two time periods (8 and 24 h) at one concentration (20 µM). In vitro obtained results were subsequently applied to a 2F-DCK-related fatality case. In vitro-produced metabolites were investigated using high-resolution accurate mass spectrometry using Orbitrap mass analyzer technology. Thirteen metabolites were in vitro produced and several metabolic pathways can be postulated. Seven additional metabolites were found in post-mortem samples (bile and urine) of the case, comprising three Phase II metabolites, which appear to be minor in vivo metabolites. HLMs and HepaRG cell models appear to be complementary and obtained data allowed the identification of several specific 2F-DCK metabolites in biological samples. In practical terms, observed metabolic ratios suggested that nor-2F-DCK (208.1137 m/z) and a hydrogenated metabolite (224.1443 m/z) could be proposed as reliable metabolites to be recorded in HRMS libraries in order to improve detection of 2F-DCK use.


Subject(s)
Ketamine/analogs & derivatives , Mass Spectrometry/methods , Microsomes, Liver/metabolism , Substance Abuse Detection/methods , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Ketamine/analysis , Ketamine/metabolism , Models, Biological , Time Factors
11.
Clin Toxicol (Phila) ; 60(1): 122-125, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34085577

ABSTRACT

BACKGROUND: The recreational use of new psychoactive substances (NPS) is increasing worldwide. Among them, the arylcyclohexylamine family including phencyclidine (PCP) and ketamine derivatives is increasing. We report a non-fatal intoxication mainly due to arylcyclohexylamine compounds illustrated by molecular networking (MN). CASE DETAILS: A 37-year-old man with a history of drug abuse was discovered with several bags labeled as research chemicals around him and traces of powder on his nose. He was rehydrated, intubated, and admitted to the intensive care unit (ICU). Urine and drug were analyzed by liquid chromatography-mass spectrometry for NPS identification. Several NPS were quantified in urine: 3-OH-PCP at 12,085 mg/L, 3-MeO-PCP at 1100 mg/L, 2F-DCK at 147 mg/L, N-ethylhexedrone at 165 mg/L and CMC at 48 mg/L. Using a bioinformatic approach, a molecular network was built to confirm the consumption of powders contained in the bags by comparison with patient's urine. DISCUSSION: This case illustrates the interest of MN to (i) perform sample-to-sample comparison, (ii) target quantification methods, and (iii) allow proper management to confirm the relevance of the treatment.


Subject(s)
Ketamine , Substance-Related Disorders , Adult , Chromatography, Liquid , Critical Care , Humans , Male , Mass Spectrometry , Psychotropic Drugs , Substance Abuse Detection/methods , Substance-Related Disorders/diagnosis , Substance-Related Disorders/therapy
12.
Toxicon ; 200: 87-91, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34274377

ABSTRACT

The amanitins (namely α- and ß-amanitin) contained in certain mushrooms are bicyclic octapeptides that, when ingested, are responsible for potentially lethal hepatotoxicity. M101 is an extracellular hemoglobin extracted from the marine worm Arenicola marina. It has intrinsic Cu/Zn-SOD-like activity and is currently used as an oxygen carrier in organ preservation solutions. Our present results suggest that M101 might be effective in reducing amanitin-induced hepatotoxicity and may have potential for therapeutic development.


Subject(s)
Chemical and Drug Induced Liver Injury , Oxygen , Amanitins , Chemical and Drug Induced Liver Injury/drug therapy , Hemoglobins , Humans
13.
Toxins (Basel) ; 13(6)2021 06 11.
Article in English | MEDLINE | ID: mdl-34208167

ABSTRACT

The consumption of mushrooms has become increasingly popular, partly due to their nutritional and medicinal properties. This has increased the risk of confusion during picking, and thus of intoxication. In France, about 1300 cases of intoxication are observed each year, with deaths being mostly attributed to Amanita phalloides poisoning. Among amatoxins, α- and ß-amanitins are the most widely studied toxins. Hepatotoxicity is the hallmark of these compounds, leading to hepatocellular failure within three days of ingestion. The toxic mechanisms of action mainly include RNA polymerase II inhibition and oxidative stress generation, leading to hepatic cell apoptosis or necrosis depending on the doses ingested. Currently, there is no international consensus concerning Amanita phalloides poisoning management. However, antidotes with antioxidant properties remain the most effective therapeutics to date suggesting the predominant role of oxidative stress in the pathophysiology. The partially elucidated mechanisms of action may reveal a suitable target for the development of an antidote. The aim of this review is to present an overview of the knowledge on amanitins, including the latest advances that could allow the proposal of new innovative and effective therapeutics.


Subject(s)
Amanitins , Amanitins/pharmacokinetics , Amanitins/therapeutic use , Amanitins/toxicity , Animals , Humans , Mushroom Poisoning/therapy
14.
Toxicol Lett ; 346: 1-6, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33872745

ABSTRACT

Amanitin poisonings are among the most life-threatening mushroom poisonings, and are mainly caused by the genus Amanita. Hepatotoxicity is the hallmark of amanitins, powerful toxins contained in these mushrooms, and can require liver transplant. Among amatoxins, α-amanitin is the most studied. However, the hypothesis of a possible metabolism of amanitins is still controversial in this pathophysiology. Therefore, there is a need of clarification using cutting-edge tools allowing metabolism study. Molecular network has emerged as powerful tool allowing metabolism study through organization and representation of untargeted tandem mass spectrometry (MS/MS) data in a graphical form. The aim of this study is to investigate amanitin metabolism using molecular networking. In vivo (four positive amanitin urine samples) and in vitro (differentiated HepaRG cells supernatant incubated with α-amanitin 2 µM for 24 h) samples were extracted and analyzed by LC-HRMS/MS using a Q Exactive™ Orbitrap mass spectrometer. Using molecular networking on both in vitro and in vivo, we have demonstrated that α-amanitin does not undergo metabolism in human. Thus, we provide solid evidence that a possible production of amanitin metabolites cannot be involved in its toxicity pathways. These findings can help to settle the debate on amanitin metabolism and toxicity.


Subject(s)
Alpha-Amanitin/metabolism , Alpha-Amanitin/chemistry , Alpha-Amanitin/urine , Amanita/chemistry , Animals , Cell Line , Cell Survival/drug effects , Humans , Molecular Structure , Mushroom Poisoning/urine
15.
Int J Mol Sci ; 22(4)2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33670021

ABSTRACT

The World Health Organization has estimated that approximately 3 million deaths are attributable to alcohol consumption each year. Alcohol consumption is notably associated with the development and/or progression of many non-communicable inflammatory diseases-particularly in the liver. Although these alcoholic liver diseases were initially thought to be caused by the toxicity of ethanol on hepatocytes, the latest research indicates Kupffer cells (the liver macrophages) are at the heart of this "inflammatory shift". Purinergic signaling (notably through P2X7 receptors and the NLRP3 inflammasome) by Kupffer cells appears to be a decisive factor in the pathophysiology of alcoholic liver disease. Hence, the modulation of purinergic signaling might represent a new means of treating alcoholic liver disease. Here, we review current knowledge on the pathophysiology of alcoholic liver diseases and therapeutic perspectives for targeting these inflammatory pathways.


Subject(s)
Inflammasomes/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Molecular Targeted Therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Purinergic P2X7/metabolism , Animals , Humans , Signal Transduction
16.
Med Sci (Paris) ; 37(3): 235-241, 2021 Mar.
Article in French | MEDLINE | ID: mdl-33739270

ABSTRACT

The liver ensures a large part of xenobiotics metabolism thanks to its sizeable enzymatic equipment, its anatomical localization and its abundant vascularization. However, these various characteristics also make it a privileged target for toxic compounds, particularly in the case of a toxic metabolism. Xenobiotics-induced hepatotoxicity is a major cause of liver damage and a real challenge for clinicians, pharmaceutical industry, and health agencies. Intrinsic, i.e. predictable and reproducible hepatotoxicities occurring at threshold doses are distinguished from idiosyncratic hepatotoxicities, occurring in an unpredictable manner in people with individual susceptibilities. Among them, idiosyncratic immune-mediated hepatotoxicity pathophysiology is still unclear. However, the development of tools to improve the prediction and understanding of these disorders may open avenues to the identification of risk factors and new mechanisms of toxicity.


TITLE: Il était une fois l'hépatotoxicité…. ABSTRACT: Le foie assure une grande partie du métabolisme des xénobiotiques. Ses particularités en font pourtant une cible privilégiée pour des composés toxiques. Les hépatotoxicités des xénobiotiques, ces molécules étrangères à notre organisme, constituent un vrai défi pour les cliniciens, l'industrie pharmaceutique, et les agences de santé. à la différence des hépatotoxicités intrinsèques, prévisibles et reproductibles, les hépatotoxicités idiosyncrasiques surviennent de manière non prévisible. La physiopathologie des hépatotoxicités idiosyncrasiques à médiation immune reste la moins bien connue. Le développement d'outils qui permettent désormais d'améliorer la prédiction et la compréhension de ces atteintes hépatiques paraît être une approche prometteuse pour identifier des facteurs de risque, et de nouveaux mécanismes de toxicité.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Xenobiotics/adverse effects , Humans
17.
Cell Biol Toxicol ; 37(2): 151-175, 2021 04.
Article in English | MEDLINE | ID: mdl-32535746

ABSTRACT

Steatosis is a liver lesion reported with numerous pharmaceuticals. Prior studies showed that severe impairment of mitochondrial fatty acid oxidation (mtFAO) constantly leads to lipid accretion in liver. However, much less is known about the mechanism(s) of drug-induced steatosis in the absence of severe mitochondrial dysfunction, although previous studies suggested the involvement of mild-to-moderate inhibition of mtFAO, increased de novo lipogenesis (DNL), and impairment of very low-density lipoprotein (VLDL) secretion. The objective of our study, mainly carried out in human hepatoma HepaRG cells, was to investigate these 3 mechanisms with 12 drugs able to induce steatosis in human: amiodarone (AMIO, used as positive control), allopurinol (ALLO), D-penicillamine (DPEN), 5-fluorouracil (5FU), indinavir (INDI), indomethacin (INDO), methimazole (METHI), methotrexate (METHO), nifedipine (NIF), rifampicin (RIF), sulindac (SUL), and troglitazone (TRO). Hepatic cells were exposed to drugs for 4 days with concentrations decreasing ATP level by less than 30% as compared to control and not exceeding 100 × Cmax. Among the 12 drugs, AMIO, ALLO, 5FU, INDI, INDO, METHO, RIF, SUL, and TRO induced steatosis in HepaRG cells. AMIO, INDO, and RIF decreased mtFAO. AMIO, INDO, and SUL enhanced DNL. ALLO, 5FU, INDI, INDO, SUL, RIF, and TRO impaired VLDL secretion. These seven drugs reduced the mRNA level of genes playing a major role in VLDL assembly and also induced endoplasmic reticulum (ER) stress. Thus, in the absence of severe mitochondrial dysfunction, drug-induced steatosis can be triggered by different mechanisms, although impairment of VLDL secretion seems more frequently involved, possibly as a consequence of ER stress.


Subject(s)
Fatty Liver/chemically induced , Fatty Liver/pathology , Mitochondria, Liver/metabolism , Toxicity Tests , Apolipoproteins B/genetics , Apolipoproteins B/metabolism , Biomarkers/metabolism , Cell Line, Tumor , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Fatty Acids/metabolism , Fatty Liver/genetics , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Lipogenesis/drug effects , Lipogenesis/genetics , Lipoproteins, VLDL/metabolism , Mitochondria, Liver/drug effects , Oxidation-Reduction/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Taurochenodeoxycholic Acid/pharmacology
18.
Int J Mol Sci ; 23(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35008505

ABSTRACT

Using drugs to treat COVID-19 symptoms may induce adverse effects and modify patient outcomes. These adverse events may be further aggravated in obese patients, who often present different illnesses such as metabolic-associated fatty liver disease. In Rennes University Hospital, several drug such as hydroxychloroquine (HCQ) have been used in the clinical trial HARMONICOV to treat COVID-19 patients, including obese patients. The aim of this study is to determine whether HCQ metabolism and hepatotoxicity are worsened in obese patients using an in vivo/in vitro approach. Liquid chromatography high resolution mass spectrometry in combination with untargeted screening and molecular networking were employed to study drug metabolism in vivo (patient's plasma) and in vitro (HepaRG cells and RPTEC cells). In addition, HepaRG cells model were used to reproduce pathophysiological features of obese patient metabolism, i.e., in the condition of hepatic steatosis. The metabolic signature of HCQ was modified in HepaRG cells cultured under a steatosis condition and a new metabolite was detected (carboxychloroquine). The RPTEC model was found to produce only one metabolite. A higher cytotoxicity of HCQ was observed in HepaRG cells exposed to exogenous fatty acids, while neutral lipid accumulation (steatosis) was further enhanced in these cells. These in vitro data were compared with the biological parameters of 17 COVID-19 patients treated with HCQ included in the HARMONICOV cohort. Overall, our data suggest that steatosis may be a risk factor for altered drug metabolism and possibly toxicity of HCQ.


Subject(s)
Antiviral Agents/adverse effects , Antiviral Agents/metabolism , COVID-19 Drug Treatment , Hydroxychloroquine/adverse effects , Hydroxychloroquine/metabolism , Aged , Antiviral Agents/therapeutic use , COVID-19/complications , COVID-19/metabolism , Cell Line , Cell Survival/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Correlation of Data , Drug-Related Side Effects and Adverse Reactions , Fatty Acids/pharmacology , Fatty Liver/complications , Fatty Liver/metabolism , Female , Humans , Hydroxychloroquine/therapeutic use , Linear Models , Male , Metabolic Networks and Pathways , Middle Aged , Obesity/complications , Obesity/metabolism , Risk Factors
19.
Sci Rep ; 10(1): 19921, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33199804

ABSTRACT

Metabolism is involved in both pharmacology and toxicology of most xenobiotics including drugs. Yet, visualization tools facilitating metabolism exploration are still underused, despite the availibility of pertinent bioinformatics solutions. Since molecular networking appears as a suitable tool to explore structurally related molecules, we aimed to investigate its interest in in vitro metabolism exploration. Quetiapine, a widely prescribed antipsychotic drug, undergoes well-described extensive metabolism, and is therefore an ideal candidate for such a proof of concept. Quetiapine was incubated in metabolically competent human liver cell models (HepaRG) for different times (0 h, 3 h, 8 h, 24 h) with or without cytochrom P450 (CYP) inhibitor (ketoconazole as CYP3A4/5 inhibitor and quinidine as CYP2D6 inhibitor), in order to study its metabolism kinetic and pathways. HepaRG culture supernatants were analyzed on an ultra-high performance liquid chromatography coupled with tandem mass spectrometry (LC-HRMS/MS). Molecular networking approach on LC-HRMS/MS data allowed to quickly visualize the quetiapine metabolism kinetics and determine the major metabolic pathways (CYP3A4/5 and/or CYP2D6) involved in metabolite formation. In addition, two unknown putative metabolites have been detected. In vitro metabolite findings were confirmed in blood sample from a patient treated with quetiapine. This is the first report using LC-HRMS/MS untargeted screening and molecular networking to explore in vitro drug metabolism. Our data provide new evidences of the interest of molecular networking in drug metabolism exploration and allow our in vitro model consistency assessment.


Subject(s)
Antipsychotic Agents/pharmacology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Metabolic Networks and Pathways/drug effects , Metabolome/drug effects , Quetiapine Fumarate/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Female , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Prognosis , Tumor Cells, Cultured
20.
Biochimie ; 179: 266-274, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32891697

ABSTRACT

Obese patients who often present metabolic dysfunction-associated fatty liver disease (MAFLD) are at risk of severe presentation of coronavirus disease 2019 (COVID-19). These patients are more likely to be hospitalized and receive antiviral agents and other drugs required to treat acute respiratory distress syndrome and systemic inflammation, combat bacterial and fungal superinfections and reverse multi-organ failure. Among these pharmaceuticals, antiretrovirals such as lopinavir/ritonavir and remdesivir, antibiotics and antifungal agents can induce drug-induced liver injury (DILI), whose mechanisms are not always understood. In the present article, we hypothesize that obese COVID-19 patients with MAFLD might be at higher risk for DILI than non-infected healthy individuals or MAFLD patients. These patients present several concomitant factors, which individually can favour DILI: polypharmacy, systemic inflammation at risk of cytokine storm, fatty liver and sometimes nonalcoholic steatohepatitis (NASH) as well as insulin resistance and other diseases linked to obesity. Hence, in obese COVID-19 patients, some drugs might cause more severe (and/or more frequent) DILI, while others might trigger the transition of fatty liver to NASH, or worsen pre-existing steatosis, necroinflammation and fibrosis. We also present the main mechanisms whereby drugs can be more hepatotoxic in MAFLD including impaired activity of xenobiotic-metabolizing enzymes, mitochondrial dysfunction, altered lipid homeostasis and oxidative stress. Although comprehensive investigations are needed to confirm our hypothesis, we believe that the current epidemic of obesity and related metabolic diseases has extensively contributed to increase the number of cases of DILI in COVID-19 patients, which may have participated in presentation severity and death.


Subject(s)
COVID-19 Drug Treatment , COVID-19/complications , Chemical and Drug Induced Liver Injury , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Chemical and Drug Induced Liver Injury/physiopathology , Humans , Liver/drug effects , Liver/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...