Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Eur Phys J C Part Fields ; 84(1): 18, 2024.
Article in English | MEDLINE | ID: mdl-38205101

ABSTRACT

High-precision searches for an electric dipole moment of the neutron (nEDM) require stable and uniform magnetic field environments. We present the recent achievements of degaussing and equilibrating the magnetically shielded room (MSR) for the n2EDM experiment at the Paul Scherrer Institute. We present the final degaussing configuration that will be used for n2EDM after numerous studies. The optimized procedure results in a residual magnetic field that has been reduced by a factor of two. The ultra-low field is achieved with the full magnetic-field-coil system, and a large vacuum vessel installed, both in the MSR. In the inner volume of ∼1.4m3, the field is now more uniform and below 300 pT. In addition, the procedure is faster and dissipates less heat into the magnetic environment, which in turn, reduces its thermal relaxation time from 12h down to 1.5h.

2.
Eur Phys J C Part Fields ; 83(11): 1061, 2023.
Article in English | MEDLINE | ID: mdl-38021215

ABSTRACT

We present a novel Active Magnetic Shield (AMS), designed and implemented for the n2EDM experiment at the Paul Scherrer Institute. The experiment will perform a high-sensitivity search for the electric dipole moment of the neutron. Magnetic-field stability and control is of key importance for n2EDM. A large, cubic, 5 m side length, magnetically shielded room (MSR) provides a passive, quasi-static shielding-factor of about 105 for its inner sensitive volume. The AMS consists of a system of eight complex, feedback-controlled compensation coils constructed on an irregular grid spanned on a volume of less than 1000 m3 around the MSR. The AMS is designed to provide a stable and uniform magnetic-field environment around the MSR, while being reasonably compact. The system can compensate static and variable magnetic fields up to ±50µT (homogeneous components) and ±5µT/m (first-order gradients), suppressing them to a few µT in the sub-Hertz frequency range. The presented design concept and implementation of the AMS fulfills the requirements of the n2EDM experiment and can be useful for other applications, where magnetically silent environments are important and spatial constraints inhibit simpler geometrical solutions.

3.
Phys Rev Lett ; 131(10): 102502, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37739382

ABSTRACT

The absolute scale of the neutrino mass plays a critical role in physics at every scale, from the subatomic to the cosmological. Measurements of the tritium end-point spectrum have provided the most precise direct limit on the neutrino mass scale. In this Letter, we present advances by Project 8 to the cyclotron radiation emission spectroscopy (CRES) technique culminating in the first frequency-based neutrino mass limit. With only a cm^{3}-scale physical detection volume, a limit of m_{ß}<155 eV/c^{2} (152 eV/c^{2}) is extracted from the background-free measurement of the continuous tritium beta spectrum in a Bayesian (frequentist) analysis. Using ^{83m}Kr calibration data, a resolution of 1.66±0.19 eV (FWHM) is measured, the detector response model is validated, and the efficiency is characterized over the multi-keV tritium analysis window. These measurements establish the potential of CRES for a high-sensitivity next-generation direct neutrino mass experiment featuring low background and high resolution.

4.
Phys Rev Lett ; 131(8): 082502, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37683153

ABSTRACT

We present an apparatus for detection of cyclotron radiation yielding a frequency-based ß^{±} kinetic energy determination in the 5 keV to 2.1 MeV range, characteristic of nuclear ß decays. The cyclotron frequency of the radiating ß particles in a magnetic field is used to determine the ß energy precisely. Our work establishes the foundation to apply the cyclotron radiation emission spectroscopy (CRES) technique, developed by the Project 8 Collaboration, far beyond the 18-keV tritium endpoint region. We report initial measurements of ß^{-}'s from ^{6}He and ß^{+}'s from ^{19}Ne decays to demonstrate the broadband response of our detection system and assess potential systematic uncertainties for ß spectroscopy over the full (MeV) energy range. To our knowledge, this is the first direct observation of cyclotron radiation from individual highly relativistic ß's in a waveguide. This work establishes the application of CRES to a variety of nuclei, opening its reach to searches for new physics beyond the TeV scale via precision ß-decay measurements.

6.
Rev Sci Instrum ; 93(9): 095105, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182526

ABSTRACT

We present the magnetically shielded room (MSR) for the n2EDM experiment at the Paul Scherrer Institute, which features an interior cubic volume with each side of length 2.92 m, thus providing an accessible space of 25 m3. The MSR has 87 openings of diameter up to 220 mm for operating the experimental apparatus inside and an intermediate space between the layers for housing sensitive signal processing electronics. The characterization measurements show a remanent magnetic field in the central 1 m3 below 100 pT and a field below 600 pT in the entire inner volume, up to 4 cm to the walls. The quasi-static shielding factor at 0.01 Hz measured with a sinusoidal 2 µT peak-to-peak signal is about 100 000 in all three spatial directions and increases rapidly with frequency to reach 108 above 1 Hz.

7.
Eur Phys J C Part Fields ; 81(6): 512, 2021.
Article in English | MEDLINE | ID: mdl-34720721

ABSTRACT

We present the design of a next-generation experiment, n2EDM, currently under construction at the ultracold neutron source at the Paul Scherrer Institute (PSI) with the aim of carrying out a high-precision search for an electric dipole moment of the neutron. The project builds on experience gained with the previous apparatus operated at PSI until 2017, and is expected to deliver an order of magnitude better sensitivity with provision for further substantial improvements. An overview is of the experimental method and setup is given, the sensitivity requirements for the apparatus are derived, and its technical design is described.

8.
Phys Rev Lett ; 124(8): 081803, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32167372

ABSTRACT

We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a ^{199}Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is d_{n}=(0.0±1.1_{stat}±0.2_{sys})×10^{-26} e.cm.

9.
Phys Rev Lett ; 115(16): 162502, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26550870

ABSTRACT

We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1 µT magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1 pT/cm. This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.


Subject(s)
Gravitation , Models, Theoretical , Neutrons , Cold Temperature , Kinetics
10.
Phys Rev Lett ; 114(16): 162501, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25955048

ABSTRACT

It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

11.
Phys Rev Lett ; 99(10): 104801, 2007 Sep 07.
Article in English | MEDLINE | ID: mdl-17930393

ABSTRACT

We report the first successful extraction of accumulated ultracold neutrons (UCN) from a converter of superfluid helium, in which they were produced by downscattering neutrons of a cold beam from the Munich research reactor. Windowless UCN extraction is performed in vertical direction through a mechanical cold valve. This prototype of a versatile UCN source is comprised of a novel cryostat designed to keep the source portable and to allow for rapid cooldown. We measured time constants for UCN storage and extraction into a detector at room temperature, with the converter held at various temperatures between 0.7 and 1.3 K. The UCN production rate inferred from the count rate of extracted UCN is close to the theoretical expectation.

SELECTION OF CITATIONS
SEARCH DETAIL
...