Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Brain Res ; 241(2): 427-440, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36574036

ABSTRACT

Deep space flight missions will expose astronauts to multiple stressors, including sleep fragmentation and space radiation. There is debate over whether sleep disruptions are an issue in deep space. While these stressors independently impair sensorimotor function, the combined effects on performance are currently unknown. String-pulling behavior involves highly organized bimanual reach-to-grasp and withdraw movements. This behavior was examined under rested wakeful conditions and immediately following one session of sleep fragmentation in Sham and irradiated rats 3 months after exposure (10 cGy 4Helium or 5-ion simulated Galactic Cosmic Radiation). Sleep fragmentation disrupted several aspects of string-pulling behavior, such that rats' ability to grasp the string was reduced, reach endpoint concentration was more variable, and distance traveled by the nose increased in the Y-range compared to rested wakeful performance. Overall, irradiated rats missed the string more than Sham rats 3 months post-exposure. Irradiated rats also exhibited differential impairments at 3 months, with additional deficits unveiled after sleep fragmentation. 4Helium-exposed rats took longer to approach the string after sleep fragmentation. Further, rats exposed to 4Helium traveled shorter withdraw distances 3 months after irradiation, while this only emerged in the other irradiated group after sleep fragmentation. These findings identify sleep fragmentation as a risk for fine motor dysfunction in Sham and irradiated conditions, in addition to radiation exposure. There may be complex temporal alterations in performance that are stressor- and ion-dependent. Thus, it is critical to implement appropriate models of multi-flight stressors and performance assessments in preparation for future deep space flight missions.


Subject(s)
Sleep Deprivation , Space Flight , Rats , Animals , Humans , Sleep Deprivation/complications , Helium , Movement , Astronauts
2.
Int J Mol Sci ; 22(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34299332

ABSTRACT

Exposure of rodents to <20 cGy Space Radiation (SR) impairs performance in several hippocampus-dependent cognitive tasks, including spatial memory. However, there is considerable inter-individual susceptibility to develop SR-induced spatial memory impairment. In this study, a robust label-free mass spectrometry (MS)-based unbiased proteomic profiling approach was used to characterize the composition of the hippocampal proteome in adult male Wistar rats exposed to 15 cGy of 1 GeV/n 48Ti and their sham counterparts. Unique protein signatures were identified in the hippocampal proteome of: (1) sham rats, (2) Ti-exposed rats, (3) Ti-exposed rats that had sham-like spatial memory performance, and (4) Ti-exposed rats that impaired spatial memory performance. Approximately 14% (159) of the proteins detected in hippocampal proteome of sham rats were not detected in the Ti-exposed rats. We explored the possibility that the loss of the Sham-only proteins may arise as a result of SR-induced changes in protein homeostasis. SR-exposure was associated with a switch towards increased pro-ubiquitination proteins from that seen in Sham. These data suggest that the role of the ubiquitin-proteome system as a determinant of SR-induced neurocognitive deficits needs to be more thoroughly investigated.


Subject(s)
Cosmic Radiation , Hippocampus/radiation effects , Proteome/metabolism , Ubiquitin/metabolism , Animals , Cognition/radiation effects , Dose-Response Relationship, Radiation , Extraterrestrial Environment , Hippocampus/metabolism , Male , Proteomics/methods , Rats , Rats, Wistar , Spatial Memory/radiation effects
3.
Int J Radiat Biol ; 97(8): 1077-1087, 2021.
Article in English | MEDLINE | ID: mdl-31724895

ABSTRACT

PURPOSE: Astronauts on the planned missions to Mars are expected to have to work more autonomously than on previous missions. Thus mission success may be influenced by the astronauts' ability to respond quickly to unexpected problems, processes that require several executive functions. The purpose of this study was to determine the impact that prolonged low dose and low dose rate exposure to neutrons had on two executive functions, and whether the severity and incidence of cognitive impairment was altered by sleep fragmentation. MATERIALS AND METHODS: In this study we assessed the impact that prolonged (six month) low dose rate neutron exposure had on the ability of male Wistar rats to perform in two executive function tasks (i.e. attentional set shifting (ATSET) - a constrained cognitive flexibility task and the UCFlex assay - an unconstrained cognitive flexibility task). In recognition of the fact that astronauts also have to contend with inadequate sleep quantity and quality for much of their time in space, we determined the impact that relatively mild sleep disruption had on the ability to perform in the ATSET test in sham and neutron-irradiated rats. RESULTS: Chronic low dose (18 cGy) and dose-rate (1 mGy/day) exposure of rats to mixed neutron and photon over the course of six months resulted in significant impairment of simple discrimination (SD) performance. Should similar effects occur in astronauts subjected to low dose rate exposure to Space Radiation, the impairment of SD performance would result in a decreased ability to identify and learn the 'rules' required to respond to a new task or situation. Analysis of the behavioral data by kernel density estimation revealed that 40% of rats had severe ATSET impairments. This value may be a best-case scenario because exposure to neutrons also adversely impacted performance in the UCFlex task. Furthermore, when the good performing rats were reevaluated after they had been subjected to sleep fragmentation, additional ATSET performance decrements were observed in the set shifting stages of the ATSET test, with only 7.4% of the neutron exposed rats able to successfully perform ATSET under normal and sleep fragmented conditions, as opposed to ∼55% of shams. CONCLUSION: Protracted low dose and low dose rate neutron exposures impairs executive functions in a high percentage of rats that were normally rested, however further detriments in performance become evident when the rats are subjected to sleep fragmentation.


Subject(s)
Executive Function/radiation effects , Neutrons/adverse effects , Sleep Deprivation/physiopathology , Animals , Cosmic Radiation , Dose-Response Relationship, Radiation , Male , Rats , Rats, Wistar
4.
Radiat Res ; 194(2): 116-123, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32845991

ABSTRACT

Astronauts on deep space missions will be required to work autonomously and thus their ability to perform executive functions could be critical to mission success. Ground-based rodent experiments have shown that low (<25 cGy) doses of several space radiation (SR) ions impair various aspects of executive function. Translating ground-based rodent studies into tangible risk estimates for astronauts remains an enormous challenge, but should similar neurocognitive impairments occur in astronauts exposed to low-SR doses, a Numbers-Needed-to-Harm analysis (of the rodent data) predicts that approximately 30% of the astronauts could develop severe cognitive flexibility decrements. In addition to the health risks associated with SR exposure, astronauts have to contend with other stressors, of which inadequate sleep quantity and quality are considered to be major concerns. We have shown that a single session of fragmented sleep uncovered latent attentional set-shifting (ATSET) performance deficits in rats exposed to protracted neutron radiation that had no obvious defects in performance under rested wakefulness conditions. It is unclear if the exacerbating effect of sleep fragmentation (SF) only occurs in rats receiving protracted low-dose-rate-neutron radiation. In this study, we assessed whether SF also unmasks latent ATSET deficits in rats exposed to 5 cGy 600 MeV/n 28Si ions. Only sham and Si-irradiated rats that had good ATSET performance (passing every stage of the test on their first attempt) were selected for study. Sleep fragmentation selectively impaired performance in the more complex IDR, EDS and EDR stages of the ATSET test in the Si-irradiated rats. Set-shifting performance has rarely been affected by SR exposure in our studies conducted with rats tested under rested wakefulness conditions. The consistent SF-related unmasking of latent set-shifting deficits in both Si- and neutron-irradiated rats suggests that there is a unique interaction between sleep fragmentation and space radiation on the functionality of the brain regions that regulate performance in the IDR, EDS and EDR stages of ATSET. The uncovering of these latent SR-induced ATSET performance deficits in both Si- and neutron-irradiated rats suggests that the true impact of SR-induced cognitive impairment may not be fully evident in normally rested rats, and thus cognitive testing needs to be conducted under both rested wakefulness and sleep fragmentation conditions.


Subject(s)
Executive Function/radiation effects , Silicon/pharmacology , Sleep/physiology , Sleep/radiation effects , Animals , Dose-Response Relationship, Radiation , Executive Function/physiology , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...