Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Reproduction ; 167(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38579791

ABSTRACT

In brief: Social insect queens display both extraordinary longevity and fertility. In this point of view, we describe their distinctive traits that make them useful models for reproductive longevity, holding implications for human health discoveries. Abstract: Social insects present an extraordinary opportunity as models for reproductive longevity because they challenge the conventional patterns of aging and reproduction seen in other model organisms. Their queens are simultaneously long-lived and highly fecund, and understanding how these traits co-occur may lead to discoveries with important implications for human health.


Subject(s)
Aging , Fertility , Insecta , Longevity , Reproduction , Animals , Longevity/physiology , Reproduction/physiology , Insecta/physiology , Aging/physiology , Fertility/physiology , Humans , Female , Social Behavior
2.
ACS Chem Biol ; 19(1): 9-14, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38096499

ABSTRACT

In the course of an attempted total chemical synthesis of the ant insulin-like peptide-2 (ILP2) protein molecule, specific cleavage of a backbone peptide bond in a branched ester-linked polypeptide chain with concomitant peptide splicing was observed. The side reaction was investigated in model compounds. Here, we postulate a chemical mechanism for this novel polypeptide backbone cleavage reaction as a chemical counterpart to the resolution step of biochemical intein-mediated protein splicing.


Subject(s)
Inteins , Protein Splicing , Proteins , Peptides/chemistry , RNA Splicing
3.
Front Endocrinol (Lausanne) ; 14: 1291635, 2023.
Article in English | MEDLINE | ID: mdl-38269245

ABSTRACT

Mate choice is a critical decision with direct implications for fitness. Although it has been recognized for over 150 years, our understanding of its underlying mechanisms is still limited. Most studies on mate choice focus on the evolutionary causes of behavior, with less attention given to the physiological and molecular mechanisms involved. This is especially true for invertebrates, where research on mate choice has largely focused on male behavior. This review summarizes the current state of knowledge on the neural, molecular and neurohormonal mechanisms of female choice in invertebrates, including behaviors before, during, and after copulation. We identify areas of research that have not been extensively explored in invertebrates, suggesting potential directions for future investigation. We hope that this review will stimulate further research in this area.


Subject(s)
Biological Evolution , Invertebrates , Animals , Female , Male , Knowledge
4.
PLoS Biol ; 19(6): e3001305, 2021 06.
Article in English | MEDLINE | ID: mdl-34191794

ABSTRACT

Oxytocin/vasopressin-related neuropeptides are highly conserved and play major roles in regulating social behavior across vertebrates. However, whether their insect orthologue, inotocin, regulates the behavior of social groups remains unknown. Here, we show that in the clonal raider ant Ooceraea biroi, individuals that perform tasks outside the nest have higher levels of inotocin in their brains than individuals of the same age that remain inside the nest. We also show that older ants, which spend more time outside the nest, have higher inotocin levels than younger ants. Inotocin thus correlates with the propensity to perform tasks outside the nest. Additionally, increasing inotocin pharmacologically increases the tendency of ants to leave the nest. However, this effect is contingent on age and social context. Pharmacologically treated older ants have a higher propensity to leave the nest only in the presence of larvae, whereas younger ants seem to do so only in the presence of pupae. Our results suggest that inotocin signaling plays an important role in modulating behaviors that correlate with age, such as social foraging, possibly by modulating behavioral response thresholds to specific social cues. Inotocin signaling thereby likely contributes to behavioral individuality and division of labor in ant societies.


Subject(s)
Ants/physiology , Behavior, Animal/physiology , Oxytocin/metabolism , Social Behavior , Vasopressins/metabolism , Aging/physiology , Animals , Brain/physiology , HEK293 Cells , Humans , Oxytocin/chemistry , Vasopressins/chemistry
5.
Oxid Med Cell Longev ; 2020: 4807179, 2020.
Article in English | MEDLINE | ID: mdl-32015787

ABSTRACT

Systemic inflammation is a crucial factor for microglial activation and neuroinflammation in neurodegeneration. This work is aimed at assessing whether previous exposure to systemic inflammation potentiates neurotoxic damage by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and how chronic systemic inflammation participates in the physiopathological mechanisms of Parkinson's disease. Two different models of systemic inflammation were employed to explore this hypothesis: a single administration of lipopolysaccharide (sLPS; 5 mg/kg) and chronic exposure to low doses (mLPS; 100 µg/kg twice a week for three months). After three months, both groups were challenged with MPTP. With the sLPS administration, Iba1 staining increased in the striatum and substantia nigra, and the cell viability lowered in the striatum of these mice. mLPS alone had more impact on the proinflammatory profile of the brain, steadily increasing TNFα levels, activating microglia, reducing BDNF, cell viability, and dopamine levels, leading to a damage profile similar to the MPTP model per se. Interestingly, mLPS increased MAO-B activity possibly conferring susceptibility to MPTP damage. mLPS, along with MPTP administration, exacerbated the neurotoxic effect. This effect seemed to be coordinated by microglia since minocycline administration prevented brain TNFα increase. Coadministration of sLPS with MPTP only facilitated damage induced by MPTP without significant change in the inflammatory profile. These results indicate that chronic systemic inflammation increased susceptibility to MPTP toxic effect and is an adequate model for studying the impact of systemic inflammation in Parkinson's disease.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , Brain/metabolism , Inflammation/immunology , Microglia/immunology , Neurons/physiology , Parkinson Disease/immunology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Calcium-Binding Proteins/metabolism , Cell Death , Cells, Cultured , Disease Models, Animal , Humans , Lipopolysaccharides/metabolism , Male , Mice , Mice, Inbred ICR , Microfilament Proteins/metabolism , Rats
6.
Science ; 361(6400): 398-402, 2018 07 27.
Article in English | MEDLINE | ID: mdl-30049879

ABSTRACT

Queens and workers of eusocial Hymenoptera are considered homologous to the reproductive and brood care phases of an ancestral subsocial life cycle. However, the molecular mechanisms underlying the evolution of reproductive division of labor remain obscure. Using a brain transcriptomics screen, we identified a single gene, insulin-like peptide 2 (ilp2), which is always up-regulated in ant reproductives, likely because they are better nourished than their nonreproductive nestmates. In clonal raider ants (Ooceraea biroi), larval signals inhibit adult reproduction by suppressing ilp2, thus producing a colony reproductive cycle reminiscent of ancestral subsociality. However, increasing ILP2 peptide levels overrides larval suppression, thereby breaking the colony cycle and inducing a stable division of labor. These findings suggest a simple model for the origin of ant eusociality via nutritionally determined reproductive asymmetries potentially amplified by larval signals.


Subject(s)
Ants/growth & development , Insulin/metabolism , Social Behavior , Animals , Ants/genetics , Ants/metabolism , Biological Evolution , Brain/metabolism , Gene Expression , Insulin/genetics , Larva/genetics , Larva/growth & development , Larva/metabolism , Reproduction , Signal Transduction
7.
Cell ; 170(4): 736-747.e9, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28802043

ABSTRACT

Ants exhibit cooperative behaviors and advanced forms of sociality that depend on pheromone-mediated communication. Odorant receptor neurons (ORNs) express specific odorant receptors (ORs) encoded by a dramatically expanded gene family in ants. In most eusocial insects, only the queen can transmit genetic information, restricting genetic studies. In contrast, workers in Harpegnathos saltator ants can be converted into gamergates (pseudoqueens) that can found entire colonies. This feature facilitated CRISPR-Cas9 generation of germline mutations in orco, the gene that encodes the obligate co-receptor of all ORs. orco mutations should significantly impact olfaction. We demonstrate striking functions of Orco in odorant perception, reproductive physiology, and social behavior plasticity. Surprisingly, unlike in other insects, loss of OR functionality also dramatically impairs development of the antennal lobe to which ORNs project. Therefore, the development of genetics in Harpegnathos establishes this ant species as a model organism to study the complexity of eusociality.


Subject(s)
Ants/growth & development , Ants/genetics , Insect Proteins/genetics , Receptors, Odorant/genetics , Social Behavior , Amino Acid Sequence , Animals , Ants/anatomy & histology , Ants/physiology , Arthropod Antennae/anatomy & histology , Arthropod Antennae/metabolism , Base Sequence , Behavior, Animal , Clustered Regularly Interspaced Short Palindromic Repeats , Female , Gene Knockout Techniques , Insect Proteins/chemistry , Male , Mutation , Pheromones/metabolism , Receptors, Odorant/chemistry
8.
Proc Natl Acad Sci U S A ; 113(49): 14091-14096, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27911792

ABSTRACT

A major aim of sociogenomic research is to uncover common principles in the molecular evolution of sociality. This endeavor has been hampered by the small number of specific genes currently known to function in social behavior. Here we provide several lines of evidence suggesting that ants have evolved a large and novel clade of odorant receptor (OR) genes to perceive hydrocarbon-based pheromones, arguably the most important signals in ant communication. This genomic expansion is also mirrored in the ant brain via a corresponding expansion of a specific cluster of glomeruli in the antennal lobe. We show that in the clonal raider ant, hydrocarbon-sensitive basiconic sensilla are found only on the ventral surface of the female antennal club. Correspondingly, nearly all genes in a clade of 180 ORs within the 9-exon subfamily of ORs are expressed exclusively in females and are highly enriched in expression in the ventral half of the antennal club. Furthermore, we found that across species and sexes, the number of 9-exon ORs expressed in antennae is tightly correlated with the number of glomeruli in the antennal lobe region innervated by odorant receptor neurons from basiconic sensilla. Evolutionary analyses show that this clade underwent a striking gene expansion in the ancestors of all ants and slower but continued expansion in extant ant lineages. This evidence suggests that ants have evolved a large clade of genes to support pheromone perception and that gene duplications have played an important role in the molecular evolution of ant communication.


Subject(s)
Animal Communication , Ants/genetics , Evolution, Molecular , Receptors, Odorant/genetics , Sensilla/anatomy & histology , Animals , Ants/anatomy & histology , Ants/metabolism , Female , Gene Expression Profiling , Male , Receptors, Odorant/metabolism , Sensilla/metabolism
9.
Curr Biol ; 24(4): 451-8, 2014 Feb 17.
Article in English | MEDLINE | ID: mdl-24508170

ABSTRACT

Social insects are important models for social evolution and behavior. However, in many species, experimental control over important factors that regulate division of labor, such as genotype and age, is limited. Furthermore, most species have fixed queen and worker castes, making it difficult to establish causality between the molecular mechanisms that underlie reproductive division of labor, the hallmark of insect societies. Here we present the genome of the queenless clonal raider ant Cerapachys biroi, a powerful new study system that does not suffer from these constraints. Using cytology and RAD-seq, we show that C. biroi reproduces via automixis with central fusion and that heterozygosity is lost extremely slowly. As a consequence, nestmates are almost clonally related (r = 0.996). Workers in C. biroi colonies synchronously alternate between reproduction and brood care, and young workers eclose in synchronized cohorts. We show that genes associated with division of labor in other social insects are conserved in C. biroi and dynamically regulated during the colony cycle. With unparalleled experimental control over an individual's genotype and age, and the ability to induce reproduction and brood care, C. biroi has great potential to illuminate the molecular regulation of division of labor.


Subject(s)
Animal Distribution , Ants/genetics , Genome, Insect , Social Behavior , Animals , Ants/physiology , Molecular Sequence Data , Phylogeny
10.
PLoS One ; 8(1): e54940, 2013.
Article in English | MEDLINE | ID: mdl-23372796

ABSTRACT

Birth-enucleated rodents display enlarged representations of whiskers (i.e., barrels of the posteromedial subfield) in the primary somatosensory cortex. Although the historical view maintains that barrel expansion is due to incremental increases in neuronal activity along the trigeminal pathway during postnatal development, recent evidence obtained in experimental models of intramodal plasticity challenges this view. Here, we re-evaluate the role of experience-dependent neuronal activity on barrel expansion in birth-enucleated rats by combining various anatomical methods and sensory deprivation paradigms. We show that barrels in birth-enucleated rats were already enlarged by the end of the first week of life and had levels of metabolic activity comparable to those in control rats at different ages. Dewhiskering after the postnatal period of barrel formation did not prevent barrel expansion in adult, birth-enucleated rats. Further, dark rearing and enucleation after barrel formation did not lead to expanded barrels in adult brains. Because incremental increases of somatosensory experience did not promote barrel expansion in birth-enucleated rats, we explored whether shifts of the developmental timing could better explain barrel expansion during the first week of life. Accordingly, birth-enucleated rats show earlier formation of barrels, accelerated growth of somatosensory thalamocortical afferents, and an earlier H4 deacetylation. Interestingly, when H4 deacetylation was prevented with a histone deacetylases inhibitor (valproic acid), barrel specification timing returned to normal and barrel expansion did not occur. Thus, we provide evidence supporting that shifts in developmental timing modulated through epigenetic mechanisms, and not increased levels of experience dependent neuronal activity, promote barrel expansion in the primary somatosensory cortex of rats enucleated at birth.


Subject(s)
Neurons/physiology , Somatosensory Cortex/growth & development , Somatosensory Cortex/physiology , Acetylation/drug effects , Animals , Animals, Newborn , Chromatin Assembly and Disassembly , Histones/metabolism , Male , Rats , Sensory Deprivation , Trigeminal Ganglion/physiology , Valproic Acid/pharmacology
11.
ARBS annu. rev. biomed. sci ; 11(n.esp): T114-T122, 20090000. ilus
Article in English | LILACS | ID: lil-560454

ABSTRACT

It has been long thought that the brain reorganizes itself in response to environmental needs. Sensory experiences coded in action potentials are the mean by which information on the surroundings is introduced into neuronal networks. The information approaching the brain in the form of electrochemical codes must then be translated in biochemical, epigenetic and genetic ones. Only until recently we have begun understanding the underpinning of such informational transformations and how this process is expressed as neuronal plastic responses. Central for our comprehension of this matter is the finding that signals transduction cascades can modify gene expression by remodeling the chromatin through epigenetic mechanisms. Hence, chromatin remodeling seems to be the process by which experiences are “imprinted”.


Subject(s)
Epigenesis, Genetic , Gene Expression , Neuronal Plasticity , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...