Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 915: 169966, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38215835

ABSTRACT

Identifying the mechanisms that contribute to the variability of suspended particulate matter concentrations in coastal areas is important but difficult, especially due to the complexity of physical and biogeochemical interactions involved. Our study addresses this complexity and investigates changes in the horizontal spread and composition of particles, focusing on cross-coastal gradients in the southern North Sea and the English Channel. A semi-empirical model is applied on in situ data of SPM and its organic fraction to resolve the relationship between organic and inorganic suspended particles. The derived equations are applied onto remote sensing products of SPM concentration, which provide monthly synoptic maps of particulate organic matter concentrations (here, particulate organic nitrogen) at the surface together with their labile and less reactive fractions. Comparing these fractions of particulate organic matter reveals their characteristic features along the coastal-offshore gradient, with an area of increased settling rate for particles generally observed between 5 and 30 km from the coast. We identify this area as the transition zone between coastal and offshore waters with respect to particle dynamics. Presumably, in that area, the turbulence range and particle composition favor particle settling, while hydrodynamic processes tend to transport particles of the seabed back towards the coast. Bathymetry plays an important role in controlling the range of turbulent dissipation energy values in the water column, and we observe that the transition zone in the southern North Sea is generally confined to water depths below 20 m. Seasonal variations in suspended particle dynamics are linked to biological processes enhancing particle flocculation, which do not affect the location of the transition zone. We identify the criteria that allow a transition zone and discuss the cases where it is not observed in the domain. The impact of these particle dynamics on coastal carbon storage and export is discussed.

2.
Water Res ; 232: 119706, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36773352

ABSTRACT

Biofilm-coated microplastics are omnipresent in aquatic environments, carrying different organic matter (OM) that in turn influences the flocculation and settling of microplastic aggregates. In this study, the effects of chitosan, guar gum, humic acid, and xanthan gum on the flocculation of anthropogenic microplastics are examined under controlled shear through the mixing chamber experiments. The results show that all of the selected OMs have positive effects on biofilm culturing and thus enhance the growth of microplastic flocs, with more evident promoting effects for cationic and neutral OMs (i.e., chitosan and guar gum) than anionic OMs (i.e., humic acid and xanthan). No critical shear rate is observed in the size vs. shear relationship based on our measurements. In addition, the quadrature-based two-class population balance model is employed to track the development of bimodal floc size distributions (FSDs) composed of small and large microplastic flocs. The model predictions show reasonable agreement with the observed FSDs. The largest error of settling flux from the two-class model is 7.8% in contrast with the reference value measured by the camera-based FSDs with 30 bins. This study highlights the role of different OMs on microplastic flocculation and indicates that a two-class model may be sufficient to describe microplastic transport processes in estuaries.


Subject(s)
Chitosan , Microplastics , Plastics , Humic Substances , Flocculation
3.
Sci Total Environ ; 873: 162273, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36841406

ABSTRACT

The high temporal and spatial variability of tidal dominated coastal areas poses a challenge for characterising water quality. Water quality monitoring relies often on information collected by water sampling from a vessel or by satellites, and covers limited time periods and therefore limited tidal and meteorological conditions. To assess the loss of information from discrete sampling, continuous time series of one year (suspended particulate matter (SPM) concentration, SPM flux and Chlorophyll a (Chl) concentration) were used. Eight different schemes of sampling into these time series were applied that are typical for many monitoring programs. They differ in the time between sampling events (synodic or half-synodic) and the duration of the sampling (tidal cycle, half a tidal cycle, one or more samples). The information loss was quantified by applying a bootstrap method to calculate the mean and standard deviation over the considered period. These were then compared with the true mean calculated from the continuous series. The probability to match the true mean within a certain margin depends on the sampling period and the season, but it is always low, especially if the allowed uncertainty is stringent (e.g., ±2.5 % about the true mean). For the SPM concentration this probability is lower than 10 % and for Chl concentration lower than 20 %. Similarly, conclusions arise for the detection of trends in a 20 year time series of SPM concentration with an artificial yearly increase of 0.5 %. None of the sampling schemes was able to assess statistical significant interannual trends with probabilities above 60 %. Further, the significant trends overestimated the increase by a factor 2 to 8. Here, present modus operandi is thus inadequate for basic trend detection, but may be acceptable for the more marine, lower turbid areas where higher probabilities were obtained in this study.

4.
Water Res ; 226: 119300, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36323221

ABSTRACT

Interplays between microalgae and clay minerals enhance biologically mediated flocculation, thereby affecting the sedimentation and transportation of suspended particulate matter (SPM) in water and benthic environments. This interaction forms larger flocs with a higher settling velocity and enhances SPM sinking. The aim of this study was to investigate the flocculation kinetics of microalgae and clay in suspension and to elucidate the mechanisms associated with such interactions. Standard jar test experiments were conducted using various mixtures of kaolinite and microalgal samples from batch cultures (Chlorella vulgaris) to estimate biologically mediated flocculation kinetics. The organic matter (OM) composition secreted by the microalgae was characterized using a liquid chromatography - organic carbon detection system, and quantitative analysis of transparent exopolymer particles was conducted separately. A two-class flocculation kinetic model, based on the interaction between flocculi and flocs, was also adopted to quantitatively analyze the experimental data from flocculation. Results from the flocculation kinetic tests and OM analyses, in association with other data analyses (i.e., floc size distribution and flocculation kinetic model), showed that flocculation increased with OM concentration during the growth phase (10-20 d). However, on day 23 during the early stationary phase, flocculation kinetics started decreasing and substantially declined on day 30, even though the amount of OM (mainly biopolymers) continued to increase. Our results indicate that an adequate quantity of biopolymers produced by the microalgal cells in the growth phase enhanced floc-to-floc attachment and hence flocculation kinetics. In contrast, an excessive quantity of biopolymers and humic substances in the stationary phase enhanced the formation of polymeric backbone structures and flocculation via scavenging particles but simultaneously increased steric stabilization with the production of a large number of fragmented particles.


Subject(s)
Chlorella vulgaris , Microalgae , Flocculation , Clay , Suspensions , Kinetics
5.
Water Res ; 213: 118147, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35149367

ABSTRACT

Flocculation is a key process for controlling the fate and transport of suspended particulate matter (SPM) in water environments and has received considerable attention in the field of water science (e.g., oceanography, limnology, and hydrology), remaining an active area of research. The research on flocculation has been conducted to elucidate the SPM dynamics and to diagnose various environmental issues. The flocculation, sedimentation, and transportation of SPM are closely linked to the compositional and structural properties of flocs. In fact, flocs are highly heterogeneous in terms of composition. However, the lack of comprehensive research on floc composition and structure has led to misconceptions regarding the temporal and spatial dynamics of SPM. This review summarizes the current understanding of the heterogeneous composition of flocs (e.g., minerals, organic matter, metals, microplastic, engineered nanoparticles) and its effect on their structure and on their fate and transport within aquatic environments. Furthermore, the effects of human activities (e.g., pollutant discharge, construction) on floc composition are discussed.

6.
Water Res ; 194: 116953, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33657494

ABSTRACT

The quasi-Monte Carlo (QMC) method was enhanced to solve the population balance model (PBM) including aggregation and fragmentation processes for simulating the temporal evolutions of characteristic sizes and floc size distributions (FSDs) of cohesive sediments. Ideal cases with analytical solutions were firstly adopted to validate this QMC model to illustrate selected pure aggregation, pure fragmentation, and combined aggregation and fragmentation systems. Two available laboratory data sets, one with suspended kaolinite and the other with a mixture of kaolinite and montmorillonite, were further used to monitor the FSDs of cohesive sediments in controlled shear conditions. The model results show reasonable agreements with both analytical solutions and laboratory experiments. Moreover, different QMC schemes were tested and compared with the standard Monte Carlo scheme and a Latin Hypercube Sampling scheme to optimize the model performance. It shows that all QMC schemes perform better in both accuracy and time consumption than standard Monte Carlo scheme. In particular, compared with other schemes, the QMC scheme using Halton sequence requires the least particle numbers in the simulated system to reach reasonable accuracy. In the sensitivity tests, we also show that the fractal dimension and the fragmentation distribution function have large impacts on the predicted FSDs. This study indicates a great advance in employing QMC schemes to solve PBM for simulating the flocculation of cohesive sediments.


Subject(s)
Fractals , Geologic Sediments , Flocculation , Kaolin , Monte Carlo Method
7.
Water Res ; 145: 473-486, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30189402

ABSTRACT

Estuarine and coastal regions are often characterized by a high variability of suspended sediment concentrations in their waters, which influences dredging projects, contaminant transport, aquaculture and fisheries. Although various three-dimensional open source software are available to model the hydrodynamics of coastal water with a sediment module, the prediction of the fate and transport of cohesive sediments is still far from satisfied due to the lack of an efficient and robust flocculation model to estimate the floc settling velocity and the deposition rate. Single-class and sometimes two-class flocculation models are oversimplified and fail to examine complicated floc size distributions, while quadrature-based or multi-class based flocculation models may be too complicated to be coupled with large scale estuarine or ocean models. Therefore, a three-class population balance model was developed to track the sizes and number concentrations of microflocs, macroflocs and megaflocs, respectively. With the assumption of a fixed size of microflocs and megaflocs, only four tracers are needed when coupled with the open-source TELEMAC system. It enables better settling flux estimates and better addresses the occurrence and concentration of larger megaflocs. This tri-modal flocculation model was validated with two experimental data sets: (1) 1-D settling column tests with the Ems mud and (2) in-situ measurements at the WZ Buoy station on the Belgian coast. Results show that the flocculation properties of cohesive sediments can be reasonably simulated in both environments. It is also found that the number of macroflocs created, when a larger macrofloc breaks up, is a statistical mean value and may not be an integer when applying the model in the field.


Subject(s)
Geologic Sediments , Flocculation
8.
Water Environ Res ; 90(3): 244-257, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29521621

ABSTRACT

Flocculation of suspended particulate matter (SPM) in marine and estuarine environments is a complex process that is influenced by physical, biological, and chemical mechanisms. The flocculation model of Maggi (2009) was adapted to simulate flocculation under various weather conditions and during different seasons. The adaptation incorporated the effect of tide-wave-combined turbulence on floc dynamics. The model was validated using in situ measurements of floc size and SPM concentration from the southern North Sea during both calm and storm conditions. The results show that tide-wave-combined turbulence needs to be incorporated when simulating flocculation in a tide-wave-dominated environment. The observed seasonal variations in floc size (Fettweis et al., 2014) were reproduced using varying values for various floc strengths in different seasons. The results revealed that the biological effect on floc strength, which enhances aggregation, is stronger during summer, indicating that floc strength in the model should be varied seasonally.


Subject(s)
Environmental Monitoring/methods , Models, Chemical , Particulate Matter/chemistry , Rain , Water Pollutants, Chemical , Computer Simulation , Flocculation , Minerals , North Sea , Seasons
9.
Water Res ; 46(17): 5696-5706, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22921393

ABSTRACT

Divalent cations have been reported to develop bridges between anionic polyelectrolytes and negatively-charged colloidal particles, thereby enhancing particle flocculation. However, results from this study of kaolinite suspensions dosed with various anionic polyacrylamides (PAMs) reveal that Ca(2+) and Mg(2+) can lead to colloid stabilization under some conditions. To explain the opposite but coexisting processes of flocculation and stabilization with divalent cations, a conceptual flocculation model with (1) particle-binding divalent cationic bridges between PAM molecules and kaolinite particles and (2) polymer-binding divalent cationic bridges between PAM molecules is proposed. The particle-binding bridges enhanced flocculation and aggregated kaolinite particles in large, easily-settleable flocs whereas the polymer-binding bridges increased steric stabilization by developing polymer layers covering the kaolinite surface. Both the particle-binding and polymer-binding divalent cationic bridges coexist in anionic PAM- and kaolinite-containing suspensions and thus induce the counteracting processes of particle flocculation and stabilization. Therefore, anionic polyelectrolytes in divalent cation-enriched aqueous solutions can sometimes lead to the stabilization of colloidal particles due to the polymer-binding divalent cationic bridges.


Subject(s)
Acrylic Resins/chemistry , Anions/chemistry , Cations, Divalent/chemistry , Kaolin/chemistry , Flocculation
10.
Mar Pollut Bull ; 62(2): 258-69, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21122880

ABSTRACT

The impact of continuous disposal of fine-grained sediments from maintenance dredging works on the suspended particulate matter concentration in a shallow nearshore turbidity maximum was investigated during dredging experiment (port of Zeebrugge, southern North Sea). Before, during and after the experiment monitoring of SPM concentration using OBS and ADV altimetry was carried out at a location 5 km west of the disposal site. A statistical analysis, based on the concept of populations and sub-sampling, was applied to evaluate the effect. The data revealed that the SPM concentration near the bed was on average more than two times higher during the dredging experiment. The disposed material was mainly transported in the benthic layer and resulted in a long-term increase of SPM concentration and formation of fluid mud layers. The study shows that SPM concentration can be used as an indicator of environmental changes if representative time series are available.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/analysis , Particulate Matter/analysis , Refuse Disposal/methods , Water Pollutants/analysis , Belgium , Geologic Sediments/chemistry , North Sea , Particulate Matter/chemistry , Seawater , Water Pollutants/chemistry , Water Pollution/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...