Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
PLoS Biol ; 21(7): e3002181, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37410694

ABSTRACT

Public-private partnerships are key to successfully translate knowledge to products, but current frameworks do not foster the systems-wide approach required to improve crops to meet the agricultural production challenges of the 21st century.


Subject(s)
Crops, Agricultural , Public-Private Sector Partnerships , Crops, Agricultural/genetics , Organizational Innovation
2.
Genome Biol ; 19(1): 111, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30115101

ABSTRACT

The Wheat@URGI portal has been developed to provide the international community of researchers and breeders with access to the bread wheat reference genome sequence produced by the International Wheat Genome Sequencing Consortium. Genome browsers, BLAST, and InterMine tools have been established for in-depth exploration of the genome sequence together with additional linked datasets including physical maps, sequence variations, gene expression, and genetic and phenomic data from other international collaborative projects already stored in the GnpIS information system. The portal provides enhanced search and browser features that will facilitate the deployment of the latest genomics resources in wheat improvement.


Subject(s)
Genome, Plant , Sequence Analysis, DNA , Triticum/genetics , Base Sequence , Bread , Data Mining , Gene Expression Regulation, Plant , Genes, Plant , Phenotype , Reference Standards
3.
PLoS One ; 13(1): e0186329, 2018.
Article in English | MEDLINE | ID: mdl-29293495

ABSTRACT

Because of their abundance and their amenability to high-throughput genotyping techniques, Single Nucleotide Polymorphisms (SNPs) are powerful tools for efficient genetics and genomics studies, including characterization of genetic resources, genome-wide association studies and genomic selection. In wheat, most of the previous SNP discovery initiatives targeted the coding fraction, leaving almost 98% of the wheat genome largely unexploited. Here we report on the use of whole-genome resequencing data from eight wheat lines to mine for SNPs in the genic, the repetitive and non-repetitive intergenic fractions of the wheat genome. Eventually, we identified 3.3 million SNPs, 49% being located on the B-genome, 41% on the A-genome and 10% on the D-genome. We also describe the development of the TaBW280K high-throughput genotyping array containing 280,226 SNPs. Performance of this chip was examined by genotyping a set of 96 wheat accessions representing the worldwide diversity. Sixty-nine percent of the SNPs can be efficiently scored, half of them showing a diploid-like clustering. The TaBW280K was proven to be a very efficient tool for diversity analyses, as well as for breeding as it can discriminate between closely related elite varieties. Finally, the TaBW280K array was used to genotype a population derived from a cross between Chinese Spring and Renan, leading to the construction a dense genetic map comprising 83,721 markers. The results described here will provide the wheat community with powerful tools for both basic and applied research.


Subject(s)
Genotype , Polymorphism, Single Nucleotide , Polyploidy , Triticum/genetics , Genes, Plant , Phylogeny , Triticum/classification
4.
Plant Genome ; 9(1)2016 03.
Article in English | MEDLINE | ID: mdl-27898760

ABSTRACT

Transposable elements (TEs) account for more than 80% of the wheat genome. Although they represent a major obstacle for genomic studies, TEs are also a source of polymorphism and consequently of molecular markers such as insertion site-based polymorphism (ISBP) markers. Insertion site-based polymorphisms have been found to be a great source of genome-specific single-nucleotide polymorphism (SNPs) in the hexaploid wheat ( L.) genome. Here, we report on the development of a high-throughput SNP discovery approach based on sequence capture of ISBP markers. By applying this approach to the reference sequence of chromosome 3B from hexaploid wheat, we designed 39,077 SNPs that are evenly distributed along the chromosome. We demonstrate that these SNPs can be efficiently scored with the KASPar (Kompetitive allele-specific polymerase chain reaction) genotyping technology. Finally, through genetic diversity and genome-wide association studies, we also demonstrate that ISBP-derived SNPs can be used in marker-assisted breeding programs.


Subject(s)
Genome, Plant , Genotyping Techniques/methods , Polymorphism, Single Nucleotide/genetics , Repetitive Sequences, Nucleic Acid/genetics , Triticum/genetics , Genome-Wide Association Study , Genotype , Triticum/classification
5.
BMC Genomics ; 16: 850, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26493707

ABSTRACT

BACKGROUND: Fusarium crown rot (FCR) is a major cereal disease in semi-arid areas worldwide. Of the various QTL reported, the one on chromosome arm 3BL (Qcrs.cpi-3B) has the largest effect that can be consistently detected in different genetic backgrounds. Nine sets of near isogenic lines (NILs) for this locus were made available in a previous study. To identify markers that could be reliably used in tagging the Qcrs.cpi-3B locus, a NIL-derived population consisting of 774 F10 lines were generated and exploited to assess markers selected from the existing linkage map and generated from sequences of the 3B pseudomolecule. RESULTS: This is the first report on fine mapping a QTL conferring FCR resistance in wheat. By three rounds of linkage mapping using the NILs and the NIL-derived population, the Qcrs.cpi-3B locus was mapped to an interval of 0.7 cM covering a physical distance of about 1.5 Mb. Seven markers co-segregating with the locus were developed. This interval contains a total of 63 gene-coding sequences based on the 3B pseudomolecule, and six of them were known to encode disease resistance proteins. Several of the genes in this interval were among those responsive to FCR infection detected in an earlier study. CONCLUSIONS: The accurate localization of the Qcrs.cpi-3B locus and the development of the markers co-segregating with it should facilitate the incorporation of this large-effect QTL conferring FCR resistance into breeding programs as well as the cloning of the gene(s) underlying the QTL.


Subject(s)
Chromosomes, Plant/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Triticum/genetics , Chromosome Mapping , Fusarium/genetics , Fusarium/pathogenicity , Plant Diseases/microbiology , Quantitative Trait Loci/genetics , Triticum/microbiology
6.
Genome Biol ; 16: 188, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26353816

ABSTRACT

BACKGROUND: Bread wheat is not only an important crop, but its large (17 Gb), highly repetitive, and hexaploid genome makes it a good model to study the organization and evolution of complex genomes. Recently, we produced a high quality reference sequence of wheat chromosome 3B (774 Mb), which provides an excellent opportunity to study the evolutionary dynamics of a large and polyploid genome, specifically the impact of single gene duplications. RESULTS: We find that 27 % of the 3B predicted genes are non-syntenic with the orthologous chromosomes of Brachypodium distachyon, Oryza sativa, and Sorghum bicolor, whereas, by applying the same criteria, non-syntenic genes represent on average only 10 % of the predicted genes in these three model grasses. These non-syntenic genes on 3B have high sequence similarity to at least one other gene in the wheat genome, indicating that hexaploid wheat has undergone massive small-scale interchromosomal gene duplications compared to other grasses. Insertions of non-syntenic genes occurred at a similar rate along the chromosome, but these genes tend to be retained at a higher frequency in the distal, recombinogenic regions. The ratio of non-synonymous to synonymous substitution rates showed a more relaxed selection pressure for non-syntenic genes compared to syntenic genes, and gene ontology analysis indicated that non-syntenic genes may be enriched in functions involved in disease resistance. CONCLUSION: Our results highlight the major impact of single gene duplications on the wheat gene complement and confirm the accelerated evolution of the Triticeae lineage among grasses.


Subject(s)
Chromosomes, Plant , Evolution, Molecular , Gene Duplication , Genes, Plant , Triticum/genetics , Poaceae/genetics
7.
Genome Biol ; 16: 29, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25853487

ABSTRACT

BACKGROUND: Because of its size, allohexaploid nature, and high repeat content, the bread wheat genome is a good model to study the impact of the genome structure on gene organization, function, and regulation. However, because of the lack of a reference genome sequence, such studies have long been hampered and our knowledge of the wheat gene space is still limited. The access to the reference sequence of the wheat chromosome 3B provided us with an opportunity to study the wheat transcriptome and its relationships to genome and gene structure at a level that has never been reached before. RESULTS: By combining this sequence with RNA-seq data, we construct a fine transcriptome map of the chromosome 3B. More than 8,800 transcription sites are identified, that are distributed throughout the entire chromosome. Expression level, expression breadth, alternative splicing as well as several structural features of genes, including transcript length, number of exons, and cumulative intron length are investigated. Our analysis reveals a non-monotonic relationship between gene expression and structure and leads to the hypothesis that gene structure is determined by its function, whereas gene expression is subject to energetic cost. Moreover, we observe a recombination-based partitioning at the gene structure and function level. CONCLUSIONS: Our analysis provides new insights into the relationships between gene and genome structure and function. It reveals mechanisms conserved with other plant species as well as superimposed evolutionary forces that shaped the wheat gene space, likely participating in wheat adaptation.


Subject(s)
Genome, Plant , High-Throughput Nucleotide Sequencing/methods , Transcriptome/genetics , Triticum/genetics , Alternative Splicing/genetics , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , Genes, Plant , Multigene Family , Nucleic Acid Conformation , Transcription, Genetic
8.
Plant Sci ; 233: 200-212, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25711827

ABSTRACT

Survey sequencing of the bread wheat (Triticum aestivum L.) genome (AABBDD) has been approached through different strategies delivering important information. However, the current wheat sequence knowledge is not complete. The aim of our study is to provide different and complementary set of data for chromosome 4D. A survey sequence was obtained by pyrosequencing of flow-sorted 4DS (7.2×) and 4DL (4.1×) arms. Single ends (SE) and long mate pairs (LMP) reads were assembled into contigs (223Mb) and scaffolds (65Mb) that were aligned to Aegilops tauschii draft genome (DD), anchoring 34Mb to chromosome 4. Scaffolds annotation rendered 822 gene models. A virtual gene order comprising 1973 wheat orthologous gene loci and 381 wheat gene models was built. This order was largely consistent with the scaffold order determined based on a published high density map from the Ae. tauschii chromosome 4, using bin-mapped 4D ESTs as a common reference. The virtual order showed a higher collinearity with homeologous 4B compared to 4A. Additionally, a virtual map was constructed and ∼5700 genes (∼2200 on 4DS and ∼3500 on 4DL) predicted. The sequence and virtual order obtained here using the 454 platform were compared with the Illumina one used by the IWGSC, giving complementary information.


Subject(s)
Chromosomes, Plant , Gene Order , Triticum/genetics , Chromosome Mapping , Expressed Sequence Tags/chemistry , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Sequence Analysis, DNA
9.
Genome Biol ; 15(12): 546, 2014.
Article in English | MEDLINE | ID: mdl-25476263

ABSTRACT

BACKGROUND: The 17 Gb bread wheat genome has massively expanded through the proliferation of transposable elements (TEs) and two recent rounds of polyploidization. The assembly of a 774 Mb reference sequence of wheat chromosome 3B provided us with the opportunity to explore the impact of TEs on the complex wheat genome structure and evolution at a resolution and scale not reached so far. RESULTS: We develop an automated workflow, CLARI-TE, for TE modeling in complex genomes. We delineate precisely 56,488 intact and 196,391 fragmented TEs along the 3B pseudomolecule, accounting for 85% of the sequence, and reconstruct 30,199 nested insertions. TEs have been mostly silent for the last one million years, and the 3B chromosome has been shaped by a succession of bursts that occurred between 1 to 3 million years ago. Accelerated TE elimination in the high-recombination distal regions is a driving force towards chromosome partitioning. CACTAs overrepresented in the high-recombination distal regions are significantly associated with recently duplicated genes. In addition, we identify 140 CACTA-mediated gene capture events with 17 genes potentially created by exon shuffling and show that 19 captured genes are transcribed and under selection pressure, suggesting the important role of CACTAs in the recent wheat adaptation. CONCLUSION: Accurate TE modeling uncovers the dynamics of TEs in a highly complex and polyploid genome. It provides novel insights into chromosome partitioning and highlights the role of CACTA transposons in the high level of gene duplication in wheat.


Subject(s)
Chromosomes, Plant/genetics , DNA Transposable Elements , Triticum/genetics , Computational Biology/methods , Evolution, Molecular , Gene Duplication , Genes, Plant , Models, Genetic , Phylogeny , Selection, Genetic
10.
PLoS One ; 9(11): e113309, 2014.
Article in English | MEDLINE | ID: mdl-25405461

ABSTRACT

Fusarium pathogens cause two major diseases in cereals, Fusarium crown rot (FCR) and head blight (FHB). A large-effect locus conferring resistance to FCR disease was previously located to chromosome arm 3BL (designated as Qcrs-3B) and several independent sets of near isogenic lines (NILs) have been developed for this locus. In this study, five sets of the NILs were used to examine transcriptional changes associated with the Qcrs-3B locus and to identify genes linked to the resistance locus as a step towards the isolation of the causative gene(s). Of the differentially expressed genes (DEGs) detected between the NILs, 12.7% was located on the single chromosome 3B. Of the expressed genes containing SNP (SNP-EGs) detected, 23.5% was mapped to this chromosome. Several of the DEGs and SNP-EGs are known to be involved in host-pathogen interactions, and a large number of the DEGs were among those detected for FHB in previous studies. Of the DEGs detected, 22 were mapped in the Qcrs-3B interval and they included eight which were detected in the resistant isolines only. The enrichment of DEG, and not necessarily those containing SNPs between the resistant and susceptible isolines, around the Qcrs-3B locus is suggestive of local regulation of this region by the resistance allele. Functions for 13 of these DEGs are known. Of the SNP-EGs, 28 were mapped in the Qcrs-3B interval and biological functions for 16 of them are known. These results provide insights into responses regulated by the 3BL locus and identify a tractable number of target genes for fine mapping and functional testing to identify the causative gene(s) at this QTL.


Subject(s)
Fusarium/physiology , Gene Expression Regulation, Plant , Quantitative Trait Loci/genetics , Transcriptome , Triticum/genetics , Triticum/microbiology , Alleles , Base Sequence , Chromosomes, Plant/genetics , Cluster Analysis , Disease Resistance/genetics , Genotype , Host-Pathogen Interactions , Molecular Sequence Data , Plant Diseases/genetics , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Principal Component Analysis , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA , Sequence Homology, Nucleic Acid
11.
G3 (Bethesda) ; 4(10): 1943-53, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25128436

ABSTRACT

Meiotic nonreduction resulting in unreduced gametes is thought to be the predominant mechanism underlying allopolyploid formation in plants. Until now, however, its genetic base was largely unknown. The allohexaploid crop common wheat (Triticum aestivum L.), which originated from hybrids of T. turgidum L. with Aegilops tauschii Cosson, provides a model to address this issue. Our observations of meiosis in pollen mother cells from T. turgidum×Ae. tauschii hybrids indicated that first division restitution, which exhibited prolonged cell division during meiosis I, was responsible for unreduced gamete formation. A major quantitative trait locus (QTL) for this trait, named QTug.sau-3B, was detected on chromosome 3B in two T. turgidum×Ae. tauschii haploid populations. This QTL is situated between markers Xgwm285 and Xcfp1012 and covered a genetic distance of 1 cM in one population. QTug.sau-3B is a haploid-dependent QTL because it was not detected in doubled haploid populations. Comparative genome analysis indicated that this QTL was close to Ttam-3B, a collinear homolog of tam in wheat. Although the relationship between QTug.sau-3B and Ttam requires further study, high frequencies of unreduced gametes may be related to reduced expression of Ttam in wheat.


Subject(s)
Quantitative Trait Loci , Triticum/genetics , Amino Acid Sequence , Chromosome Mapping , Chromosomes, Plant/genetics , Comparative Genomic Hybridization , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cyclins/genetics , Cyclins/metabolism , Meiosis , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Polyploidy , Sequence Alignment
13.
Science ; 345(6194): 1249721, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-25035497

ABSTRACT

We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits.


Subject(s)
Chromosomes, Plant/physiology , Triticum/genetics , Bread , Chromosome Segregation , Chromosomes, Plant/genetics , DNA Transposable Elements , Meiosis , Plant Proteins/genetics , Polyploidy , Pseudogenes , Recombination, Genetic , Triticum/cytology
14.
Mol Biol Evol ; 31(7): 1724-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24694832

ABSTRACT

Meiosis, the basis of sex, evolved through iterative gene duplications. To understand whether subsequent duplications have further enriched the core meiotic "tool-kit," we investigated the fate of meiotic gene duplicates following whole genome duplication (WGD), a common occurrence in eukaryotes. We show that meiotic genes return to a single copy more rapidly than genome-wide average in angiosperms, one of the lineages in which WGD is most vividly exemplified. The rate at which duplicates are lost decreases through time, a tendency that is also observed genome-wide and may thus prove to be a general trend post-WGD. The sharpest decline is observed for the subset of genes mediating meiotic recombination; however, we found no evidence that the presence of these duplicates is counterselected in two recent polyploid crops selected for fertility. We therefore propose that their loss is passive, highlighting how quickly WGDs are resolved in the absence of selective duplicate retention.


Subject(s)
Magnoliopsida/genetics , Meiosis , Evolution, Molecular , Gene Duplication , Genome, Plant , Homologous Recombination
15.
Plant Biotechnol J ; 12(6): 787-96, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24646323

ABSTRACT

High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array including about 90,000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence-absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat.


Subject(s)
Genetic Variation , Genome, Plant/genetics , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide/genetics , Polyploidy , Triticum/genetics , Alleles , Chromosome Mapping , Cluster Analysis , Gene Frequency/genetics , Genetic Loci , Genetic Markers , Genotype
16.
Theor Appl Genet ; 127(3): 573-86, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24306318

ABSTRACT

Stagonospora nodorum glume blotch (SNG), caused by the necrotrophic fungus Stagonospora nodorum, is one of the economically important diseases of bread wheat (Triticum aestivum L.). Resistance to SNG is known to be quantitative and previous studies of a recombinant inbred line (RIL) population identified a major quantitative trait locus (QTL) for resistance to SNG on the short arm of chromosome 3B. To localize this QTL (QSng.sfr-3BS) with high resolution, we constructed a genetic map for the QTL target region using information from sequenced flow-sorted chromosomes 3B of the two parental cultivars 'Arina' and 'Forno', the physical map of chromosome 3B of cultivar 'Chinese Spring' and BAC-clone sequences. The mapping population of near-isogenic lines (NIL) was evaluated for SNG resistance in field infection tests. NILs segregated for disease resistance as well as for plant height; additionally, we observed a high environmental influence on the trait. Our analysis detected a strong negative correlation of SNG resistance and plant height. Further analysis of the target region identified two linked loci associated with SNG resistance. One of them was also associated with plant height, revealing an effect of QSng.sfr-3BS on plant height that was hidden in the RIL population. This result demonstrates an unexpectedly high genetic complexity of resistance controlled by QSng.sfr-3BS and shows the importance of the study of QTL in mendelized form in NILs.


Subject(s)
Ascomycota , Disease Resistance/genetics , Genes, Plant , Quantitative Trait Loci , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Genetic Loci , Genetic Markers , Phenotype , Plant Diseases/microbiology , Triticum/microbiology
17.
Genome Biol ; 14(12): R138, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24359668

ABSTRACT

BACKGROUND: The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution. RESULTS: Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere. CONCLUSIONS: This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications.


Subject(s)
Chromosomes, Plant/genetics , Physical Chromosome Mapping/methods , Triticum/genetics , Chromosomes, Artificial, Bacterial , Chromosomes, Plant/classification , Evolution, Molecular , Gene Order , Genes, Plant , Genomics/methods
18.
PLoS One ; 8(11): e79329, 2013.
Article in English | MEDLINE | ID: mdl-24260197

ABSTRACT

Structural changes of chromosomes are a primary mechanism of genome rearrangement over the course of evolution and detailed knowledge of such changes in a given species and its close relatives should increase the efficiency and precision of chromosome engineering in crop improvement. We have identified sequences bordering each of the main translocation and inversion breakpoints on chromosomes 4A, 5A and 7B of the modern bread wheat genome. The locations of these breakpoints allow, for the first time, a detailed description of the evolutionary origins of these chromosomes at the gene level. Results from this study also demonstrate that, although the strategy of exploiting sorted chromosome arms has dramatically simplified the efforts of wheat genome sequencing, simultaneous analysis of sequences from homoeologous and non-homoeologous chromosomes is essential in understanding the origins of DNA sequences in polyploid species.


Subject(s)
Triticum/genetics , Chromosomes, Plant/genetics , Genome, Plant/genetics , Translocation, Genetic/genetics
19.
PLoS One ; 8(11): e80272, 2013.
Article in English | MEDLINE | ID: mdl-24278269

ABSTRACT

Bread wheat (Triticum aestivum) has a large and highly repetitive genome which poses major technical challenges for its study. To aid map-based cloning and future genome sequencing projects, we constructed a BAC-based physical map of the short arm of wheat chromosome 1A (1AS). From the assembly of 25,918 high information content (HICF) fingerprints from a 1AS-specific BAC library, 715 physical contigs were produced that cover almost 99% of the estimated size of the chromosome arm. The 3,414 BAC clones constituting the minimum tiling path were end-sequenced. Using a gene microarray containing ∼40 K NCBI UniGene EST clusters, PCR marker screening and BAC end sequences, we arranged 160 physical contigs (97 Mb or 35.3% of the chromosome arm) in a virtual order based on synteny with Brachypodium, rice and sorghum. BAC end sequences and information from microarray hybridisation was used to anchor 3.8 Mbp of Illumina sequences from flow-sorted chromosome 1AS to BAC contigs. Comparison of genetic and synteny-based physical maps indicated that ∼50% of all genetic recombination is confined to 14% of the physical length of the chromosome arm in the distal region. The 1AS physical map provides a framework for future genetic mapping projects as well as the basis for complete sequencing of chromosome arm 1AS.


Subject(s)
Chromosome Mapping , Chromosomes, Plant , Chromosomes, Artificial, Bacterial , Genetic Markers , Multigene Family , Nucleic Acid Hybridization , Polymerase Chain Reaction
20.
Plant J ; 76(6): 1030-44, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24164652

ABSTRACT

Bread wheat derives from a grass ancestor structured in seven protochromosomes followed by a paleotetraploidization to reach a 12 chromosomes intermediate and a neohexaploidization (involving subgenomes A, B and D) event that finally shaped the 21 modern chromosomes. Insights into wheat syntenome in sequencing conserved orthologous set (COS) genes unravelled differences in genomic structure (such as gene conservation and diversity) and genetical landscape (such as recombination pattern) between ancestral as well as recent duplicated blocks. Contrasted evolutionary plasticity is observed where the B subgenome appears more sensitive (i.e. plastic) in contrast to A as dominant (i.e. stable) in response to the neotetraploidization and D subgenome as supra-dominant (i.e. pivotal) in response to the neohexaploidization event. Finally, the wheat syntenome, delivered through a public web interface PlantSyntenyViewer at http://urgi.versailles.inra.fr/synteny-wheat, can be considered as a guide for accelerated dissection of major agronomical traits in wheat.


Subject(s)
Chromosomes, Plant/genetics , Evolution, Molecular , Genome, Plant/genetics , Genomics , Synteny/genetics , Triticum/genetics , Conserved Sequence , DNA, Plant/chemistry , DNA, Plant/genetics , Genes, Dominant , Genetic Markers , Models, Biological , Polymorphism, Single Nucleotide , Polyploidy , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...