Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Naturwissenschaften ; 103(1-2): 8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26757930

ABSTRACT

During a recent marine biological expedition to the Northeast Greenland shelf break (latitudes 74-77 °N), we made the first discovery of Atlantic cod (Gadus morhua), beaked redfish (Sebastes mentella) and capelin (Mallotus villosus). Our novel observations shift the distribution range of Atlantic cod >1000 km further north in East Greenland waters. In light of climate change, we discuss physical forcing and putative connections between the faunas of the Northeast Greenland shelf and the Barents Sea. We emphasise the importance of using real data in spread scenarios for understudied Arctic seas.


Subject(s)
Animal Distribution , Biodiversity , Fishes/physiology , Models, Biological , Animals , Arctic Regions , Atlantic Ocean , Climate Change , Gadus morhua/physiology
2.
Mar Genomics ; 22: 45-54, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25839752

ABSTRACT

The synaptophysin (SYP) family comprises integral membrane proteins involved in vesicle-trafficking events, but the physiological function of several members has been enigmatic for decades. The presynaptic SYP protein controls neurotransmitter release, while SYP-like 2 (SYPL2) contributes to maintain normal Ca(2+)-signaling in the skeletal muscles. The polymorphic pantophysin (Pan I) of Atlantic cod shows strong genetic divergence between stationary and migratory populations, which seem to be adapted to local environmental conditions. We have investigated the functional involvement of Pan I in the different ecotypes by analyzing the 1) phylogeny, 2) spatio-temporal gene expression, 3) structure-function relationship of the Pan I(A) and I(B) protein variants, and 4) linkage to rhodopsin (rho) recently proposed to be associated with different light sensitivities in Icelandic populations of Atlantic cod. We searched for SYP family genes in phylogenetic key species and identified a single syp-related gene in three invertebrate chordates, while four members, Syp, Sypl1, Sypl2 and synaptoporin (Synpr), were found in tetrapods, Comoran coelacanth and spotted gar. Teleost fish were shown to possess duplicated syp, sypl2 and synpr genes of which the sypl2b paralog is identical to Pan I. The ubiquitously expressed cod Pan I codes for a tetra-spanning membrane protein possessing five amino acid substitutions in the first intravesicular loop, but only minor structural differences were shown between the allelic variants. Despite sizable genomic distance (>2.5 Mb) between Pan I and rho, highly significant linkage disequilibrium was found by genotyping shallow and deep water juvenile settlers predominated by the Pan I(A)-rho(A) and Pan I(B)-rho(B) haplotypes, respectively. However, the predicted rhodopsin protein showed no amino acid changes, while multiple polymorphic sites in the upstream region might affect the gene expression and pigment levels in stationary and migratory cod. Alternatively, other strongly linked genes might be responsible for the sharp settling stratification of juveniles and the different vertical behavior patterns of adult Atlantic cod.


Subject(s)
Animal Distribution/physiology , Evolution, Molecular , Gadus morhua/genetics , Polymorphism, Genetic , Rhodopsin/genetics , Synaptophysin/genetics , Animals , Base Sequence , Bayes Theorem , Computational Biology , Female , Gadus morhua/physiology , Gene Expression Profiling , Genetics, Population , Linkage Disequilibrium , Male , Models, Genetic , Phylogeny , Sequence Alignment , Species Specificity
3.
PLoS One ; 9(3): e91208, 2014.
Article in English | MEDLINE | ID: mdl-24626131

ABSTRACT

Invasion of exotic species has caused the loss of biodiversity and imparts evolutionary and ecological changes in the introduced systems. In northern Fennoscandia, European whitefish (Coregonus lavaretus (L.)) is a highly polymorphic species displaying adaptive radiations into partially reproductively isolated and thus genetically differentiated sympatric morphs utilizing the planktivorous and benthivorous food niche in many lakes. In 1993, Lake Skrukkebukta was invaded by vendace (Coregonus albula (L.)) which is a zooplanktivorous specialist. The vendace displaced the densely rakered whitefish from its preferred pelagic niche to the benthic habitat harbouring the large sparsely rakered whitefish. In this study, we investigate the potential influence of the vendace invasion on the breakdown of reproductive isolation between the two whitefish morphs. We inferred the genotypic and phenotypic differentiation between the two morphs collected at the arrival (1993) and 15 years after (2008) the vendace invasion using 16 microsatellite loci and gill raker numbers, the most distinctive adaptive phenotypic trait between them. The comparison of gill raker number distributions revealed two modes growing closer over 15 years following the invasion. Bayesian analyses of genotypes revealed that the two genetically distinct whitefish morphs that existed in 1993 had collapsed into a single population in 2008. The decline in association between the gill raker numbers and admixture values over 15 years corroborates the findings from the Bayesian analysis. Our study thus suggests an apparent decrease of reproductive isolation in a morph-pair of European whitefish within 15 years (≃ 3 generations) following the invasion of a superior trophic competitor (vendace) in a subarctic lake, reflecting a situation of "speciation in reverse".


Subject(s)
Biodiversity , Genetic Speciation , Reproductive Isolation , Salmonidae/genetics , Animals , Bayes Theorem , Ecosystem , Europe , Genetic Markers , Genotype , Geography , Gills/anatomy & histology , Introduced Species , Lakes , Male , Microsatellite Repeats/genetics , Phenotype , Salmonidae/physiology , Sympatry
4.
Ecol Evol ; 3(15): 4970-86, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24455129

ABSTRACT

Understanding how a monophyletic lineage of a species diverges into several adaptive forms has received increased attention in recent years, but the underlying mechanisms in this process are still under debate. Postglacial fishes are excellent model organisms for exploring this process, especially the initial stages of ecological speciation, as postglacial lakes represent replicated discrete environments with variation in available niches. Here, we combine data of niche utilization, trophic morphology, and 17 microsatellite loci to investigate the diversification process of three sympatric European whitefish morphs from three northern Fennoscandian lakes. The morphological divergence in the gill raker number among the whitefish morphs was related to the utilization of different trophic niches and was associated with reproductive isolation within and across lakes. The intralacustrine comparison of whitefish morphs showed that these systems represent two levels of adaptive divergence: (1) a consistent littoral-pelagic resource axis; and (2) a more variable littoral-profundal resource axis. The results also indicate that the profundal whitefish morph has diverged repeatedly from the ancestral littoral whitefish morph in sympatry in two different watercourses. In contrast, all the analyses performed revealed clustering of the pelagic whitefish morphs across lakes suggesting parallel postglacial immigration with the littoral whitefish morph into each lake. Finally, the analyses strongly suggested that the trophic adaptive trait, number of gill rakers, was under diversifying selection in the different whitefish morphs. Together, the results support a complex evolutionary scenario where ecological speciation acts, but where both allopatric (colonization history) and sympatric (within watercourse divergence) processes are involved.

5.
BMC Genomics ; 13: 293, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22747999

ABSTRACT

BACKGROUND: Highly repetitive sequences are the bane of genome sequence assembly, and the short read lengths produced by current next generation sequencing technologies further exacerbates this obstacle. An adopted practice is to exclude repetitive sequences in genome data assembly, as the majority of repeats lack protein-coding genes. However, this could result in the exclusion of important genotypes in newly sequenced non-model species. The absence of the antifreeze glycoproteins (AFGP) gene family in the recently sequenced Atlantic cod genome serves as an example. RESULTS: The Atlantic cod (Gadus morhua) genome was assembled entirely from Roche 454 short reads, demonstrating the feasibility of this approach. However, a well-known major adaptive trait, the AFGP, essential for survival in frigid Arctic marine habitats was absent in the annotated genome. To assess whether this resulted from population difference, we performed Southern blot analysis of genomic DNA from multiple individuals from the North East Arctic cod population that the sequenced cod belonged, and verified that the AFGP genotype is indeed present. We searched the raw assemblies of the Atlantic cod using our G. morhua AFGP gene, and located partial AFGP coding sequences in two sequence scaffolds. We found these two scaffolds constitute a partial genomic AFGP locus through comparative sequence analyses with our newly assembled genomic AFGP locus of the related polar cod, Boreogadus saida. By examining the sequence assembly and annotation methodologies used for the Atlantic cod genome, we deduced the primary cause of the absence of the AFGP gene family from the annotated genome was the removal of all repetitive Roche 454 short reads before sequence assembly, which would exclude most of the highly repetitive AFGP coding sequences. Secondarily, the model teleost genomes used in projection annotation of the Atlantic cod genome have no antifreeze trait, perpetuating the unawareness that the AFGP gene family is missing. CONCLUSIONS: We recovered some of the missing AFGP coding sequences and reconstructed a partial AFGP locus in the Atlantic cod genome, bringing to light that not all repetitive sequences lack protein coding information. Also, reliance on genomes of model organisms as reference for annotating protein-coding gene content of a newly sequenced non-model species could lead to omission of novel genetic traits.


Subject(s)
Antifreeze Proteins/genetics , Gadus morhua/genetics , Genome , Repetitive Sequences, Nucleic Acid/genetics , Animals , Antifreeze Proteins/metabolism , Computational Biology , Genetic Loci , Genotype , Sequence Analysis, DNA
6.
BMC Genet ; 9: 18, 2008 Feb 26.
Article in English | MEDLINE | ID: mdl-18302786

ABSTRACT

BACKGROUND: The Atlantic cod (Gadus morhua) is a groundfish of great economic value in fisheries and an emerging species in aquaculture. Genetic markers are needed to identify wild stocks in order to ensure sustainable management, and for marker-assisted selection and pedigree determination in aquaculture. Here, we report on the development and evaluation of a large number of Single Nucleotide Polymorphism (SNP) markers from the alignment of Expressed Sequence Tag (EST) sequences in Atlantic cod. We also present basic population parameters of the SNPs in samples of North-East Arctic cod and Norwegian coastal cod obtained from three different localities, and test for SNPs that may have been targeted by natural selection. RESULTS: A total of 17,056 EST sequences were used to find 724 putative SNPs, from which 318 segregating SNPs were isolated. The SNPs were tested on Atlantic cod from four different sites, comprising both North-East Arctic cod (NEAC) and Norwegian coastal cod (NCC). The average heterozygosity of the SNPs was 0.25 and the average minor allele frequency was 0.18. FST values were highly variable, with the majority of SNPs displaying very little differentiation while others had FST values as high as 0.83. The FST values of 29 SNPs were found to be larger than expected under a strictly neutral model, suggesting that these loci are, or have been, influenced by natural selection. For the majority of these outlier SNPs, allele frequencies in a northern sample of NCC were intermediate between allele frequencies in a southern sample of NCC and a sample of NEAC, indicating a cline in allele frequencies similar to that found at the Pantophysin I locus. CONCLUSION: The SNP markers presented here are powerful tools for future genetics work related to management and aquaculture. In particular, some SNPs exhibiting high levels of population divergence have potential to significantly enhance studies on the population structure of Atlantic cod.


Subject(s)
Gadus morhua/genetics , Genetic Markers/genetics , Polymorphism, Single Nucleotide/genetics , Selection, Genetic , Animals , Cluster Analysis , Expressed Sequence Tags , Gene Frequency , Genetics, Population , Genotype , Norway
7.
Genet. mol. biol ; 31(1,suppl): 180-187, 2008. ilus, tab
Article in English | LILACS | ID: lil-484583

ABSTRACT

The capelin, Mallotus villosus (Osmeriformes, Osmeridae), is an ecological and commercial key component of the sub-arctic ichthyofauna. Here, we provide the first cytogenetic information on the species based on both conventional karyotyping and chromosomal mapping of 45S and 5S ribosomal genes through fluorescence in situ hybridization (FISH). The capelin genome displayed a diploid number of 54 with the karyotypic formula 26m/sm+28st/a and a fundamental number (FN) = 80. Both classes of ribosomal genes appeared to be spread out to multiple chromosomal locations, i.e. the 45S and 5S rDNA clusters were detected on six and seven chromosome pairs, respectively. A linked chromosomal organization of the major and minor ribosomal genes classes has been visualized in most of the rDNAs chromosomal locations. A comparative analysis of the available cytogenetic data for the family Osmeridae reveals diploid numbers higher than 48 and high fundamental numbers. This suggests that a rearranged karyotype is a shared feature within this family.


Subject(s)
Animals , DNA, Ribosomal , In Situ Hybridization, Fluorescence , Fishes/genetics , Chromosome Mapping , Cytogenetics , Karyotyping , Fishes/classification
8.
BMC Evol Biol ; 7: 86, 2007 Jun 07.
Article in English | MEDLINE | ID: mdl-17555567

ABSTRACT

BACKGROUND: The walleye pollock (Theragra chalcogramma) and Norwegian pollock (T. finnmarchica) are confined to the North Pacific and North Atlantic Oceans, respectively, and considered as distinct species within the family Gadidae. We have determined the complete mtDNA nucleotide sequence of two specimens of Norwegian pollock and compared the sequences to that of 10 specimens of walleye pollock representing stocks from the Sea of Japan and the Bering Sea, 2 specimens of Atlantic cod (Gadus morhua), and 2 specimens of haddock (Melanogrammus aeglefinus). RESULTS: A total number of 204 variable positions were identified among the 12 pollock specimens, but no specific substitution pattern could be identified between the walleye and Norwegian pollocks. Phylogenetic analysis using 16,500 homologous mtDNA nucleotide positions clearly identify the Norwegian pollock within the walleye pollock species cluster. Furthermore, the Norwegian pollock sequences were most similar to mitochondrial genotypes present in walleye pollock specimens from the Sea of Japan, an observation supported both by neighbor-joining, maximum parsimony, and maximum likelihood analyses. CONCLUSION: We infer that walleye pollock and Norwegian pollock represent one single species and that Norwegian pollock has been recently introduced from the Pacific to the Atlantic Oceans.


Subject(s)
DNA, Mitochondrial/genetics , Gadiformes/classification , Phylogeny , Animals , Base Sequence , DNA Primers , Gadiformes/genetics , Molecular Sequence Data , Polymerase Chain Reaction
9.
Mol Ecol ; 12(1): 63-74, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12492878

ABSTRACT

To examine the role of contemporary selection in maintaining significant allele frequency differences at the pantophysin (PanI) locus among populations of the Atlantic cod, Gadus morhua, in northern Norway, we sequenced 127 PanIA alleles sampled from six coastal and two Barents Sea populations. The distributions of variable sites segregating within the PanIA allelic class were then compared among the populations. Significant differences were detected in the overall frequencies of PanIA alleles among populations within coastal and Arctic regions that was similar in magnitude to heterogeneity in the distributions of polymorphic sites segregating within the PanIA allelic class. The differentiation observed at silent sites in the PanIA allelic class contradicts the predicted effects of widescale gene flow and suggests that postsettlement selection acting on cohorts cannot be responsible for the genetic differences described between coastal and Arctic populations. Our results suggest that the marked differences observed between coastal and Arctic populations of G. morhua in northern Norway at the PanI locus reflect the action of recent diversifying selection and that populations throughout the region may be more independent than suggested by previous studies.


Subject(s)
Fishes/genetics , Genetic Variation , Membrane Glycoproteins/genetics , Selection, Genetic , Animals , Gene Frequency , Membrane Glycoproteins/classification , Norway , Phylogeny , Sequence Analysis, DNA
10.
Evolution ; 52(3): 915-920, 1998 Jun.
Article in English | MEDLINE | ID: mdl-28565259

ABSTRACT

Relationships between growth rate and the degree of individual heterozygosity at ten nuclear RFLP loci were examined in two populations of the Atlantic cod, Gadus morhua, from northern Norway. A highly significant positive correlation was observed between growth rate and DNA heterozygosity in one population (Balsfjord) but not in the other (Barents Sea). Our results provide support for an important prediction of the associative overdominance hypothesis that heterozygosity-fitness correlations can be detected at neutral genetic markers and suggest that environmental conditions might play a dominant role in the manifestation of the correlation.

SELECTION OF CITATIONS
SEARCH DETAIL
...